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Background. Pancreatic adenocarcinoma (PAAD) is a malignancy with a very poor prognosis. The clinical signifi-
cance of cuproptosis in PAAD combining single cell data with The Cancer Genome Atlas (TCGA) data is unclear.
Materials and methods. In this study, we first identified gene modules associated with cuproptosis by performing 
single-cell analysis and weighted co-expression network analysis (WCGNA). According to TCGA data, Cox regression 
and LASSO regression analysis were used to establish prognostic models, and PAAD patients were divided into high-
risk and low-risk groups according to cuproptosis-related risk score. Then 7 algorithms were used to evaluate cancer 
immune microenvironment, followed by the mutation analysis. The expression levels and prognostic significance of the 
8 model genes were analysed using single-gene analysis, Kaplan-Meier survival plots, and quantitative PCR (qPCR) 
validation. Finally, the biological function of CEP55 in PAAD was verified by in vitro experiments.
Results. We identified cuproptosis-related genes (CRG) in PAAD by performing single-cell analysis and WCGNA, 
and constructed a cuproptosis-related prognostic model of PAAD by comprehensive bioinformatics analyses. Based 
on cuproptosis-related risk score, there were significant differences in survival time between two groups. We further 
constructed a cuproptosis-related risk score-based nomogram to accurately assess PAAD patient prognosis. Immune 
infiltration analysis revealed that PAAD samples with higher cuproptosis-related scores exhibited significantly lower 
immune infiltration levels, which may mechanistically underlie their poorer clinical outcomes. Furthermore, the high-
risk group had a higher mutation rate of the same mutated gene, which means that they are more likely to benefit 
from immunotherapy. Finally, we identified that CEP55 was significantly overexpressed in PAAD and correlated with 
poor patient prognosis. In vitro knockdown of CEP55 effectively suppressed proliferation and invasion capabilities in 
pancreatic cancer cell lines.
Conclusions. In this study, a novel prognostic model of PAAD was constructed to evaluate the prognosis and im-
mune microenvironment of PAAD patients, and CEP55 was identified as a central gene of PAAD. In vitro studies veri-
fied the biological function of CEP55, providing a new potential target for the treatment of PAAD.
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Introduction

Pancreatic adenocarcinoma (PAAD) is a fatal dis-
ease.1-3 Due to the deep location of the pancreas 

in the body and the lack of noticeable early symp-
toms, detection and diagnosis of PAAD has been 
difficult2 and treatment has been limited.4 It is es-
timated that more than 80% of PAAD patients are 
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already unsuitable for surgery and have distant 
metastases at the time of diagnosis, for which cur-
rent treatment strategies often have little effect.5 
Recently, immunotherapies, such as PD-1/PDL-1 or 
CTLA-4 inhibitors, are being extensively studied 
for their utility in major high mutation-load solid 
tumors.6 In addition, many studies have been re-
ported on the immune microenvironment (IME) 
of PAAD and the relationship between its stromal 
cells and immune cells.7,8 However, there are still 
some gaps in key targets, inhibitors and improved 
clinical prediction models of PAAD.7

Dysregulation of apoptosis is an essential hall-
mark of cancer.9 Therefore, reconstructing the cell 
death program and inducing cancer cell death 
have been a promising development in the field 
of cancer therapy.10 In addition to the mainstream 
programmed cell death, death receptor-mediated 
apoptosis, ferroptosis11,12, pyroptosis13, parthana-
tos14, as well as the newly revealed cuproptosis15 
were also involved. It was shown that as a non-ap-
optotic cell death pathway, copper can bind to and 
aggregate with lipoylated TCA cell cycle proteins, 
which then trigger proteotoxic stress as well as 
loss of Fe-S cluster proteins, leading to cell death.16 
Given the close link between necroptosis and im-
muno-oncology17, the role of this novel cuproptosis 
model is also being explored in different cancers, 
such as hepatocellular carcinoma18, breast cancer19 
and renal clear cell carcinoma20, in the context of 
the rise of immune checkpoint therapy20, among 
others. Metabolic recombination is one of the typi-
cal characteristics of PAAD, so cuproptosis-related 
genes (CRGs) may provide new prognostic mark-
ers and guide the development of new therapeutic 
regimens.21

In this study, we used single-cell data to screen 
for differential genes associated with cupropto-
sis, and the data of 177 PAAD samples in TCGA 
were screened by the WGCNA algorithm to iden-
tify gene modules associated with cuproptosis. 
Subsequently, through comprehensive bioinfor-
matics analysis, we constructed a cuproptosis-
related prognostic model for PAAD and classified 
PAAD patients into high-risk and low-risk groups 
based on cuproptosis-related risk scores. An eval-
uation of the cancer IME using seven methods and 
mutational analysis revealed the mutation types 
in the high and low risk groups. Further analy-
sis revealed that CEP55 was significantly high 
expressed in PAAD and correlated with poor pa-
tient prognosis. Finally, we performed the in vitro 
study to reveal the biological function of CEP55 
in PAAD.

Materials and methods
Transcriptome data download and 
processing

We used “TCGAbiolinks” R package to download 
The Cancer Genome Atlas (TCGA) data as the 
training cohort. 177 transcriptomic data samples 
of in solid cancer with complete clinical data were 
obtained after eliminating non-primary tumour 
samples. Subsequently, we downloaded the PAAD 
dataset GSE85916 from the GEO database as the 
validation cohort, and all data were log2-trans-
formed to be used for subsequent analysis.

Single cell sequencing data download 
and processing

The single cell dataset GSE212966 for PAAD was 
downloaded from the GEO database. The data-
set contains a total of 12 samples. The “Seurat” R 
package was used to analyze the single cell data. 
We pre-processed these data using the following 
standards: cells with less than 10% of mitochon-
drial genes, cells with the total number of genes 
>200 and genes with expression range of 200-7000 
and being expressed in at least three cells were 
retained. The data normalization was performed 
using the LogNormalize method with a standard 
scale factor of 10,000. Subsequently, the top 2,000 
most variable features were identified and select-
ed through the FindVariableFeatures function. To 
account for mitochondrial content variation, the 
dataset was scaled using the ScaleData function 
with mitochondrial percentage as a key param-
eter. For dimensionality reduction and visualiza-
tion, the Uniform Manifold Approximation and 
Projection (UMAP) technique was implemented to 
generate two-dimensional representations of the 
clustering results. Cluster-specific marker genes 
were identified using the FindAllMarkers func-
tion with stringent statistical thresholds. Finally, 
cell type annotation was conducted by cross-ref-
erencing the identified marker genes with well-es-
tablished cell-type-specific markers documented 
in the literature.

Acquisition of cuproptosis-related genes 
(CRGs genes)

All CRGs genes were obtained from the study of 
Tsvetkov P et al. in the journal Science.15 No addi-
tional ethical approval is required, as the data are 
available online and have usage allowance. The 
percentage of CRGs genes in each cell was then 
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obtained by entering 10 CRGs genes using the 
PercentageFeatureSet function.

Weighted Co-Expression Network 
Analysis (WGCNA)

Weighted Co-Expression Network Analysis is a 
systematic biological method for characterizing 
patterns of correlation between genes in micro-
array samples.22 This method can be used to find 
clusters (modules) of highly related genes. In this 
study, we used the WGCNA method to find gene 
modules in PAAD that were highly correlated with 
cuproptosis to obtain CRGs.

Prognostic modeling associated with 
cuproptosis

A prognostic model containing 8 genes was con-
structed using Cox-lasso’s algorithm.23 Univariate 
Cox analysis was then conducted to screen for im-
portant key genes. Using the “glmnet” tool in the R 
package, LASSO Cox regression analysis is under-
taken to perform further screening and construct 
prognostic models. After this, the CRGs scores 
were calculated using the formula, and patients in 
the TCGA PAAD cohort were divided into high-
risk and low-risk groups based on the median, to 
explore the differences in prognosis between the 
two groups. Finally, we evaluated the accuracy 
of the model by receiver operating characteristic 
(ROC) analysis and principal components analysis 
(PCA).

Drug sensitivity analysis

Immunotherapy sensitivity scores for the TCGA-
PAAD (The Cancer Genome Atlas Pancreatic 
Adenocarcinoma) cohort were obtained from The 
Cancer Immunome Atlas (TCIA; https://www.
tcia.at/home). TCIA represents a comprehensive 
resource that integrates next-generation sequenc-
ing (NGS) data from TCGA and other sources, 
providing immunogenomic profiles for 20 solid 
tumor types. To evaluate differential immuno-
therapy responses between risk groups, we em-
ployed the “ggpubr” R package to perform com-
parative analyses based on CRG related scores. 
Additionally, drug sensitivity was assessed us-
ing the “pRRophetic” package, which estimates 
the Half Maximal Inhibitory Concentration 
(IC50) for various therapeutic compounds. Lower 
IC50 values indicate greater drug sensitivity in 
patients.

External validation of the model

GSE85916 in GEO was used as an external valida-
tion cohort. In this validation cohort, the CRGs 
score was calculated for each sample according to 
the formula of the model, and patients were divided 
into a high-risk group and a low-risk group based 
on the median of the scores. Survival analysis was 
performed to judge whether there was a differ-
ence in prognosis between these two subgroups. 
Next, we evaluated the stability of the model using 
ROC curves. PCA was used to explore whether the 
model could better group patients with PAAD.

Correlation analysis of immune 
infiltration and mutation

We evaluated the IME of PAAD in high and 
low risk groups using seven algorithms includ-
ing CIBERSORT, EPIC, Estimate, MCP_counter, 
Quanti-seq, TIMER, xCell and showed their re-
sults in the form of heat maps. We then performed 
intergroup mutation analysis and further analysis 
based on the results.

Construction of Nomogram

The prognostic nomogram was developed by in-
tegrating CRGs-related risk scores, with continu-
ous variables normalized and categorical variables 
incorporated using appropriate reference levels. 
Model coefficients were transformed into a 0-100 
point scoring system using the R package ‘rms’ to 
generate a clinically applicable visual predictive 
tool. The nomogram’s discriminative performance 
was rigorously assessed using ROC curve analysis 
at 1-, 3-, and 5-year follow-up intervals, with the 
area under the curve (AUC) and 95% confidence 
intervals calculated through 1000 bootstrap itera-
tions to evaluate predictive accuracy for survival 
outcomes. To further validate the model’s clinical 
utility, decision curve analysis (DCA) was per-
formed across a comprehensive range of threshold 
probabilities (0−100%), systematically comparing 
the net benefit of the nomogram against default 
“treat-all” and “treat-none” strategies while ac-
counting for the clinical consequences of false-
positive and false-negative predictions.

Single gene analysis of 8 model genes

In this study, we conducted a meticulous exami-
nation of the expression profiles of the 8 model 
genes at the single-cell level. This involved a 
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comprehensive exploration of their individual ex-
pression patterns across diverse cellular contexts. 
Subsequently, to glean insights into their clinical 
relevance, we performed a rigorous single-gene 
prognostic analysis. This investigative approach 
allowed us to unravel the nuanced intricacies of 
each gene’s expression within individual cells and, 
importantly, assess their potential impact on pa-
tient prognosis.

Immune checkpoint analysis

The expression profile data from the TCGA-PAAD 
cohort was used to analyze the expressed levels of 
79 common immune checkpoint-related genes be-
tween different CRGs-related risk scores, includ-
ing ADORA2A, BTLA, BTN2A1, BTNL3, and CD27. 
The “ggplot2” package was utilized to generate the 
boxplot and we only demonstrated differentially 
expressed immune checkpoint related genes.

Cell culture and real-time quantitative 
PCR (qPCR) validation of screened genes

HPDE6-C7 and PAAD cell lines (ASPC1 and 
BXPC3) were purchased from ATCC (Manassas, 
USA). DMEM basal medium supplemented with 
10% fetal bovine serum (Gbico), 100 µg/ml peni-
cillin and 100 mg/ml streptomycin were used for 
culture, respectively. All cells were incubated in 
an incubator with a constant temperature of 5% 
CO2 at 37°C. Experiments were performed in six 
independent biological replicates (cultures derived 
from separate passages). RNA Extraction Kit (be-
yotime) was used to extract the whole RNA from 
pancreatic epithelial cells (HPDE6-C7) and pan-
creatic cancer cells (ASPC1 and BXPC3), and then 
reverse transcribed into cDNA. SYBR green meth-
od was used for RT-qPCR. GAPDH can be used as 
a reference for comparing the mRNA expression 
levels of corresponding genes.

The sequence of RNA primers is shown below:
GAPDH: Forward: 

5’-GGAGCGAGATCCCTCCAAAAT-3’,
Reverse: 

5’-GGCTGTTGTCATACTTCTCATGG-3’;  
CEP55: Forward: 

5’-AGTAAGTGGGGATCGAAGCCT-3’,
Reverse: 

5’-CTCAAGGACTCGAATTTTCTCCA-3’;
KIF23: Forward: 5’- 

CCATAAAACCCAAACCTCCACA-3’,
Reverse: 5’-CTATGGGAACGGCTGGACTC-3’;

ARNTL2: Forward: 5’- 
ACTTGGTGCTGGTAGTATTGGA-3’,

Reverse: 5’- 
TGTTGGACTCGAATCATCAAGG-3’;

FAM111B: Forward: 5’- 
GCTAGCATGAATAGCATGAAGACA-3’,

Reverse: 5’- GGATCCGCACTCCATAGG-3’;
MRPL3: Forward: 5’- 

TGCTGCAATTAAACCAGGCAC-3’,
Reverse: 5’- CGTTTGACCATGCGTAGCAG-3’;
DHX30: Forward: 5’- 

CCAGCCTCGTGATGAGGAAT-3’,
Reverse: 5’- GCTGGGCCCGATCTTTTCT-3’;
MET: Forward: 5’- 

TGGGCACCGAAAGATAAACCT-3’,
Reverse: 5’- CACTCCCCATTGCTCCTCTG-3’;
KNSTRN: Forward: 5’- 

AGGGCCTTGATCCAGCTTTA-3’,
Reverse: 5’- 

TACCTTTAAGGCCTGTAACTCC-3’;

RNA interference and cell transfection

siRNAs targeting CEP55 (si: 
5’-GGACTTTTAGCAAAGATCTTT-3’) were con-
structed by RiboBio (Guangzhou, China). For 
the transient transfection process, we utilized 
Lipofectamine RNAiMAX reagent from Thermo 
Fisher Scientific (Massachusetts, USA). Briefly, 
cells were seeded at an appropriate density and 
allowed to adhere overnight in complete medium. 
Dilute 2µg of siRNA to be transfected and 25µl of 
Lipofectamine RNAiMAX reagent in 100 µl serum-
free medium and mix well. Functional assays were 
conducted 24 hours after transfection to evaluate 
the impact of CEP55 knockdown.

Cell Counting Kit-8 (CCK-8)

In this study, we evaluated cell proliferation and 
viability using the ASPC1 cell line with the CCK-8 
(Cell Counting Kit-8) assay. Initially, ASPC1 cells 
were seeded in a 96-well plate at a density of 1×10^4 
cells/well and incubated at 37°C with 5% CO2 for 
24 hours to allow for attachment. Following this, 
varying concentrations of the test compounds 
were added, and the cells were incubated for an 
additional 24, 48, and 72 hours. Each condition 
was tested with six independent biological repli-
cates. At the end of each treatment period, 10 µL 
of CCK-8 reagent was added to each well, and the 
plate was further incubated for 1 to 4 hours to en-
able the viable cells to reduce the reagent to a solu-
ble orange formazan product. The optical density 
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(OD) values were measured at a wavelength of 450 
nm.

Transwell

Transwell assay was performed to evaluate the 
migratory and invasive properties of ASPC1 cells 
under distinct experimental conditions: CEP55-
knockdown (siRNA), negative control (si-NC), and 
untreated control (Con) groups. The assay was per-
formed using a Transwell chamber with a polycar-
bonate membrane (8 µm pore size). First, ASPC1 
cells were trypsinized and resuspended in serum-
free medium, then seeded into the upper chamber 
at a density of 1×10^5 cells/well. The lower cham-
ber was filled with a complete medium containing 
10% fetal bovine serum (FBS) to create a chemot-
actic gradient. After 24 hours of incubation at 37°C 
with 5% CO2, non-migrated cells on the upper side 

of the membrane were gently wiped off with a cot-
ton swab, while migrated cells on the lower side 
were fixed with 4% paraformaldehyde and stained 
with crystal violet. The number of migrated cells 
was quantified under a light microscope by ran-
domly selecting five fields of view per membrane 
and counting the stained cells. 

Statistics analysis

In this study, the R software (Institute of Statistics 
and Mathematics, Vienna, Austria; version 4.1.2) 
was applied to all statistical analysis procedures. 
Quantitative data are expressed as mean ± SEM 
(standard error of the mean). Normality and 
homogeneity of variance were assessed using 
Shapiro-Wilk and Levene’s tests, respectively. For 
comparisons between two groups, we applied: (1) 
Student’s t-test for normally distributed data with 

FIGURE 1. Single cell sequencing analysis of GSE212966. (A) Dimensionality reduction and cluster analysis. All cells in 12 samples were clustered into 
14 clusters. (B) According to the surface marker genes of different cell types, the cells are annotated as D cells, endothelial cells, monocyte and 
macrophages, smooth muscle cells, natural killer (NK) cells and epithelial cells, respectively. (C) The expressed levels of ten cuproptosis-related 
genes in each cluster. (D) The percentage of necroptosis genes in each cell. The cells were divided into high- and low-cuproptosis cells. (E-H) The 
Weighted Co-Expression Network Analysis (WGCNA) algorithm identified gene modules associated with cuproptosis. Notably, MEred and MEcyan 
modules demonstrated a significant correlation with cuproptosis scores.
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(Figure 1E−H). Employing a soft threshold of 16, a 
minimum module gene counts of 100, a deepSplit 

FIGURE 2. Construction and validation of cuproptosis-related prognostic 
model. (A, B) LASSO regression identified eight genes for the prognostic model 
construction. (C) The Cancer Genome Atlas (TCGA) cohort survival analysis 
revealed poorer prognosis in the high cuproptosis-related genes (CRGs) group 
(P<0.0001). (D) GSE85916 Cohort survival analysis indicated a worse prognosis in 
the high-CRGs group (P=0.0058). (E) ROC curve of TCGA cohort. The AUC values 
of the model in 2, 3 and 5 years were 0.720, 0.757 and 0.846, respectively. (F) ROC 
curve of GSE85916 Cohort. The AUC values of the model in 2, 3 and 5 years were 
0.798, 0.824 and 0.795, respectively. (G, H) Principal components analysis (PCA) 
analysis in TCGA and GSE85916 cohorts demonstrated effective patient grouping 
in both training and validation sets.

equal variances; (2) Welch’s t-test for normally dis-
tributed data with unequal variances; or (3) the 
Wilcoxon rank-sum test (Mann-Whitney U test) for 
non-normally distributed data. For multiple group 
comparisons, we employed: (1) one-way ANOVA 
(with Tukey’s post hoc test) for normally distribut-
ed data with equal variances; (2) Welch’s ANOVA 
(with Games-Howell post hoc test) for normally 
distributed data with unequal variances; or (3) the 
Kruskal-Wallis test (with Dunn’s post hoc test) for 
non-normally distributed data. Each group con-
tains 6 samples. It was statistically significant only 
when two-sided p value < 0.05.

Results 

Our workflow diagram is shown in Supplementary 
Figure 1.

Single cell sequencing data analysis

In the initial step, we integrated and scrutinized 
the PAAD single-cell sequencing dataset obtained 
from GEO. The quality control process of the 
single-cell analysis is depicted in Supplementary 
Figure 2. Illustrated in Supplementary Figure 2, 
these samples exhibited seamless integration 
without any discernible interval effects, pav-
ing the way for subsequent analysis. Utilizing 
the k-Nearest Neighbor (KNN) clustering algo-
rithm, we categorized all cells into 14 clusters 
(Figure 1A). Additionally, seven distinct cell types 
were identified as dendritic cells (DC), monocyte, 
macrophage, endothelial cells, smooth muscle 
cells, natural killer (NK) cells, and epithelial cells 
(Figure 1B). Figure 1C illustrates the distribution of 
10 CRGs genes within each cluster. 

Cells were stratified into those exhibiting low 
and high expression related to cuproptosis, based 
on the median percentage of CRGs, as illustrated 
in the tSNE plot (Figure 1D). The high CRGs and 
low CRGs groups were subjected to differentially 
expressed analysis, leading to the identification of 
a specific gene.

Weighted Co-Expression Network 
Analysis WGCNA

In the TCGA cohort, cuproptosis-related score 
(Cup_score) was calculated by ssGSEA. Then, 
Cup_score related module were derived through 
WGCNA analysis of the transcriptome data 
from 177 pancreatic adenocarcinoma patients 
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value of 2, and merging modules with a similarity 
threshold below 0.5 resulted in a total of 11 non-
grey modules (Figure 1F−G). Notably, MEred and 
MEcyan modules demonstrated a significant as-
sociation with cuproptosis scores within the non-
grey modules, as illustrated in Figure 1H.

Genes meeting a stringent p-value threshold of 
< 0.05 were selected from these three modules for 
subsequent analysis. Furthermore, differential ex-
pression analysis, followed by enrichment analy-
sis of PAAD data from TCGA, revealed the pivotal 
involvement of immune-related processes. Key 
pathways such as the chemokine signalling path-
way, cytokine-cytokine receptor interaction, and 
B cell receptor signalling pathway were identified 

as playing crucial roles in pancreatic adenocarci-
noma, as depicted in Supplementary Figure 3.

Construction and validation of a 
cuproptosis-related prognostic model

By intersecting differentially expressed genes 
identified through single-cell sequencing data 
analysis with CRGs obtained from WGCNA, a to-
tal of 773 genes were curated. Initial selection of 
genes associated with patient prognosis was per-
formed through univariate COX analysis, with a 
significance threshold set at P < 0.05. Subsequently, 
in LASSO regression analysis, gene contraction 
exhibited optimal stability with minimal partial 

FIGURE 3. The construction of a nomogram. (A) Nomogram for the patient predicting mortality rates at 1, 3 and 5 years: 0.576, 
0.973, and 0.994, respectively. (B) Nomogram ROC curve indicating AUC values at 1, 3 and 5 years as 0.71, 0.8, and 0.84. (C) 
Decision curve analysis demonstrated superior performance of the nomogram over other clinical indicators.

A
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FIGURE 4. Immune microenvironment and mutation correlation analysis. (A) Heatmap depicts immune cell infiltration 
in high and low cuproptosis-related genes (CRGs) groups, with seven methods employed to assess the cancer immune 
microenvironment in corresponding risk groups. (B-E) The results of the mutation types in high- and low-CRGs groups. (F) Further 
analysis revealed that there were variations in the mutation rates of the same genes in high- and low-CRGs groups. (G) The 
CRGs risk level positive correlates with tumor mutational burden.
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likelihood bias when eight genes were included 
(Figure 2A–B).

The final prognostic model comprised 8 genes 
(CEP55, KIF23, ARNTL2, FAM111B, MRPL3, MET, 
KNSTRN, DHX30). Figure 2C illustrates a poorer 
prognosis in the high CRGs group within the 
TCGA training cohort (P < 0.0001). Similarly, in 
the GSE85916 validation cohort, patients with 
high CRGs demonstrated a significantly worse 
prognosis than those with low CRGs (P = 0.0058, 
Figure 2D).

To assess the stability of CRGs in prognostic 
evaluation for PAAD patients, ROC curve analysis 
was performed in both the training and validation 

cohorts. Shown in Figure 2E are ROC curves for 
2-year, 3-year, and 5-year prognoses in the TCGA 
and GSE85916 cohorts, respectively. In the TCGA 
cohort, the area under the curve (AUC) values were 
0.720, 0.757, and 0.846 at 2, 3, and 5 years, while in 
the validation cohort, the AUCs were 0.798, 0.824, 
and 0.795 at 2, 3, and 5 years (Figure 2F). These re-
sults affirm that CRGs exhibits high accuracy in 
predicting patient prognosis in both cohorts.

Finally, PCA analysis of the eight genes in the 
model, performed in the training and validation 
sets, respectively, revealed the model’s efficacy in 
effectively distinguishing PAAD patients into dif-
ferent groups (Figure 2G-H).

FIGURE 5. Single-cell sequencing analysis to investigate the cellular localization of 8 model genes. (A–H) Expression patterns of 8 genes in single 
cells. (I–P) Univariate cox analysis of the prognostic value of 8 genes.
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The construction of a Nomogram

In order to accurately calculate the prognosis of 
PAAD patients, we constructed a Nomogram by 
cuproptosis-related scores. As the nomogram ex-
hibited in Figure 3A, the mortality rates of patients 
at 1, 3, and 5 years were estimated to be 0.576, 0.973, 
and 0.994 according to their age and CRGs score. 
In essence, the column line plot is a visualization 
of the regression equation results that can be used 
to easily calculate the prognosis of PAAD patients 
and guide subsequent clinical decisions. To fur-
ther evaluate the accuracy of this line plot, a ROC 
analysis was performed. The results showed that 
the area under the curve (AUC) was 0.71, 0.8, and 
0.84 at 1, 3, and 5 years, respectively (Figure 3B). 
In order to evaluate the clinical utility of CRGs 
scores, we conducted decision curve analysis on 
this nomogram, and the results showed that they 
were above the reference line for a large threshold 
range, which had a good guiding effect (Figure 3C).

Immuno-infiltration analysis and 
mutation environment

Through our comprehensive analysis, we’ve iden-
tified significant variations in patient outcomes 
within the CRGs subgroup. To unravel the etiol-
ogy and guide immunotherapy, we utilized seven 
methods to explore differences in the cancer im-
mune microenvironment. Results in Figure 4A de-
pict a higher presence of immune cell infiltrates, 
predominantly T cells, B cells, and macrophages, 
in the low CRGs group. Statistical outcomes from 
7 immune infiltration algorithms (Supplementary 
Figure 4) support these findings. Additionally, the 
expressed levels of immune checkpoint-related 
genes showed in Supplementary Figure 5A–B. We 
found that most of the immune checkpoint-related 
genes were high expressed in low CRGs group, 
such as BTLA, CD160, CTLA4, LAG3, PDCD1, 
TIGIT, CD27, CD28, and TNFSRF14.

Moving to genomic analysis, we examined 
the top 20 mutated genes in high and low CRGs 
groups. Mutation rates in the high and low CRGs 
group were tested separately. The results showed 
that KRAS, TP53, CDKN2A, SMAD4 and TTN had 
the highest mutation rates in high and low CRGs 
groups and the mutation rate was higher in the 
high CRGs group (Figure 4B,C). Although the mu-
tation types were similar, there were a small num-
ber of Deletion (DEL) mutations in the low CRGs 
group in addition to Single-nucleotide polymor-
phisms (SNPs) (Figure 4D,E). In addition, we also 

performed mutation gene association analysis in 
the high and low CRGs group. The results showed 
that TP53 and KARS mutations occurred simulta-
neously in the high CRGs group, while SMAD4 
and CDKN2A mutations occurred in addition to 
TP53 and KARS mutations in the low CRGs group. 
(Supplementary Figure 5C-D). Notably, a higher 
mutation burden was observed in the high CRGs 
group (Figure 4F). Correlation analysis revealed 
a direct relationship between CRGs (Cup) and 
Tumor Mutational Burden (TMB) (Figure 4G), con-
firming mutual validation. Our pathway analysis 
(Supplementary Figure 5E–F) concentrated muta-
tions in key pathways. The results showed that 
RTK-RAS and TP53 were highly correlated with 
mutation genes in high CRGs group, while TGF-
Beta and TP53 were highly correlated with muta-
tion genes in low CRGs group. These findings 
contribute to a nuanced understanding of immune 

FIGURE 6. Cell experiment 
and screening of low cu-
proptosis-related genes 
(CRGs). (A) quantitative 
real time-PCR (qRT-PCR) 
to assess the expression 
of 8 cuproptosis-related 
genes (CRGs) in pan-
creatic epithelial cells 
(HPDE6-C7) and two pan-
creatic cancer cell lines 
(ASPC-1 and BXPC-3). (B) 
Immunohistochemical 
analysis revealed el-
evated protein expres-
sion of CEP55, FAM111B, 
MRPL3, MET, and KNSTRN 
in pancreatic cancer tis-
sues, while DHX30 exhib-
ited significantly higher 
expression in normal 
pancreatic tissues than 
in pancreatic cancer tis-
sues among the 8 CRGs.

A

B
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microenvironment variations and genomic land-
scapes within distinct CRGs subgroups, offering 
valuable insights for cancer immunotherapy.

Drug sensitivity intergroup differences

In order to further explore the different emphases 
of drug therapy for patients in high and low risk 
groups, 5 drugs associated with the copper ion 
metabolism or cuproptosis were selected for drug 
sensitivity analysis (Supplementary Figure 6). The 
results showed that Elesclomol had significant dif-
ferences between high and low CRGs expression 
groups (Supplementary Figure 6A), and the IC50 
of high risk group was lower, so patients with high 
CRG score were more sensitive to Elesclomol. 

Cellular localization and prognostic 
analysis of 8 hub genes

To investigate the expression patterns of hub genes 
across distinct cell types, we conducted a detailed 
single-gene analysis focusing on the eight identi-
fied hub genes (Figure 5A–H). The results, revealed 
that CEP55, KIF23, ARNTL2, MRPL3 and MET dis-
played prominent expression in Epithelial cells. 
Furthermore, FAM111B, DHX30 and KNSTRN 
demonstrated a prevalent expression pattern in all 
cell types.

Subsequently, a comprehensive prognostic 
analysis was performed for these eight genes. The 
findings, depicted in Figure 5I-P, unveiled that, 
with the exception of DHX30, PAAD patients with 

FIGURE 7. CEP55 knockdown inhibits pancreatic adenocarcinoma (PAAD) in ASPC1 cell line. (A) quantitative real time-PCR 
(qRT-PCR) to assess the expression of CEP55. (B) The results of Cell Counting Kit-8 (CCK8). (C-D) CEP55 knockdown inhibits cell 
invasive ability by transwell assay. (E-F) CEP55 knockdown inhibits colony formation in ASPC1 cell line.

A B

C

D

E
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elevated expression levels of the remaining seven 
genes experienced significantly worse prognoses 
compared to those with lower expression levels. 
These results underscore the potential prognostic 
significance of these genes in the context of PAAD, 
shedding light on their differential expression 
across various cell types.

Confirming the expression levels of CRGs

The expression of CRGs in pancreatic epithelial 
cells (HPDE6-C7) and two pancreatic cancer cells 
(ASPC-1, BXPC-3) was detected by RT-qPCR. The 
results showed that except for DHX30, mRNA 
expression levels of other 7 genes in cancer cells 
were higher than those in normal cells (Figure 6A). 
Immunohistochemical results showed that among 
the 8 CRGs: CEP55, FAM111B, MRPL3, MET, and 
KNSTRN had higher protein expression in pancre-
atic cancer tissues, while on the contrary, the pro-
tein expression of DHX30 in normal pancreas was 
significantly higher than that in pancreatic cancer 
tissues (Figure 6B). These results were also consist-
ent with the above RT-qPCR results. In addition, 
KIF23 was strongly positive in normal pancre-
atic tissue and PAAD, and the difference between 
them could not be significantly distinguished. No 
ARNTL2 positive signal was detected in the im-
munohistochemical results of pancreas and pan-
creatic cancer. Therefore, the immunohistochemi-
cal results of the above two genes were not shown. 

CEP55 promotes cell proliferation and 
invasion in ASPC1 cells

To investigate the functional role of CEP55 in 
PAAD progression, we successfully knockdown 
CEP55 in the ASPC1 cell line using siRNA silenc-
ing. While siRNA silencing achieved only partial 
reduction of CEP55 expression (Figure 7A), this 
partial suppression was sufficient to markedly 
impair cell viability (Figure 7B), migration, and 
invasion (Figure 7C–D), as well as colony forma-
tion (Figure 7E–F) compared to control groups. 
These findings suggest that the downregulation 
of CEP55 effectively inhibits cell proliferation, 
migration, invasion, and colony formation, even 
under incomplete silencing conditions. Notably, 
siRNA provides rapid and transient gene suppres-
sion, whereas complete and sustained knockdown 
methods may yield more pronounced phenotypic 
effects. Nevertheless, our data underscore that 
partial CEP55 downregulation significantly atten-
uates key hallmarks of PAAD progression.

Discussion

Pancreatic adenocarcinoma (PAAD) is a malig-
nancy with a very poor prognosis, and the 5-year 
survival rate for this disease is statistically less 
than 7%.1,24 In the past, to prolong the survival of 
PAAD patients, we could only use surgical and 
chemotherapeutic treatments, although their ef-
fectiveness was in fact limited.25,26 In recent years, 
with the development of cancer immunotherapy 
in full swing27,28, more and more scholars have 
also started to put their eyes on the relationship 
between PAAD and immunotherapy.29,30 For ex-
ample, Fengjiao Li et al. found that Glucose trans-
porter 1 (GLUT1) regulates the tumor IME through 
an ncRNA-mediated network and promotes PAAD 
tumor metastasis31; However, up to now, immu-
notherapy has not yielded satisfactory results in 
PAAD.7,32 This makes the research in immuno-
therapy of PAAD full of potential. Cuproptosis, a 
newly discovered form of cell death, has a great 
role in the tumor microenvironment16,33,34 and has 
been extensively studied in the field of cancer.35,36 
However, there are still few studies on cuproptosis 
in PAAD. The aim of this study was to investigate 
the prognostic value of cuproptosis in PAAD and 
its role in the IME using multi-omics techniques 
such as transcriptomic analysis and single-cell 
analysis.

In this study, through an extensive analysis of 
PAAD data from the TCGA and GEO databases, 
we divided PAAD patients into high-risk and 
low-risk groups based on the subsequently calcu-
lated cuproptosis scores. The results showed that 
both in the TCGA and GEO cohorts, the high-risk 
group showed a poorer outcome. Since there are 
no studies to date on the association between CRG 
and the occurrence of PAAD37, we constructed an 
8-gene model related to CRGs score based on dif-
ferential expression analysis and WGCNA results. 
In addition, by using ROC curves, we found that 
the model also showed high accuracy in assessing 
the prognosis of PAAD patients at 2, 3 and 5 years. 
The results of the immune microenvironment and 
mutation correlation analysis showed similarity in 
mutated genes between high and low risk groups, 
while there were some differences in the mutation 
rates of the same genes. We identified CEP55 as the 
hub gene with the greatest difference through qP-
CR and immunohistochemistry. In previous stud-
ies of CEP55 in breast cancer, CEP55 knockdown 
significantly reduced cell survival, proliferation, 
and migration.38 In this study, CEP55 knockdown 
effectively inhibited cell proliferation, migration, 
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invasion and colony formation, demonstrating 
that CEP55 can promote the progression of PAAD. 
Moreover, we used single-cell data to explore the 
distribution of 10 CRGs genes in different types 
of PAAD cells. In addition, the distribution of 8 
CRGs in different cell types also had mutual cor-
roboration with the results of immune infiltration 
analysis based on CRGs scores, further exploring 
the possible mechanism of cuproptosis in PAAD. 

Despite the rapid development of cancer im-
munotherapy, the application of this approach in 
PAAD has had little success for a long time39, which 
is one of the reasons why the prognosis of PAAD is 
so poor. The TME, also known as the stromal com-
partment, is composed of cancer-associated fibro-
blasts (CAFS) with immune cells.40 The prevailing 
view is that the TME can activate and transform 
growth factor beta to drive the recruitment of im-
munosuppressive cells, thereby limiting immune 
cell infiltration and impairing their function in 
the tumor41, while the abundant stromal compo-
nent in the tumor is one of the specific features 
of PAAD.42,43 Therefore, PAAD was considered to 
be low immunogenic.44 In recent years, however, 
new breakthrough points have been made in this 
thorny historical problem. A new model has been 
used to convert non-immunogenic PAAD into im-
munomodulatory immunogenic lesions45, while 
tertiary lymphoid structures (TLS) in the tumors 
of some PAAD patients have been identified to 
contribute to antitumor immunity.46 The role of 
various immunomarkers in PAAD has been ex-
tensively studied.47-49 It is important to understand 
the TME of PAAD based on new perspectives. In 
the present study, we found that immune-related 
processes play a crucial role in PAAD by differen-
tial expression analysis and enrichment analysis. 
Therefore, we utilized seven algorithms to explore 
differences in the cancer immune microenviron-
ment. The results showed that the infiltration level 
of immune cells in the high CRGs group was sig-
nificantly lower than that in the low CRGs group, 
and the statistically significant immune cells were 
also consistent with the pathway obtained by en-
richment analysis. Thus, the high CRGs group may 
be more likely to benefit from immunotherapy.

CEP55 is a key protein in cytokinesis50, whose 
overexpression is associated with genomic insta-
bility, one of the hallmarks of cancer.51 CEP55 over-
expression promotes genomic instability by51, acti-
vates PI3k/Akt pathway signaling52 and inhibition 
of apoptosis.53 However, no previous studies have 
investigated its role in cuproptosis. CEP55 is a gene 
involved in lipid metabolism54, and lipoacylation is 

a mitochondrial process essential for cuproptosis55, 
so we hypothesized that knocking down CEP55 
could reduce the efficiency of lipoacylation and 
thus inhibit cuproptosis. However, in our study, 
knocking down CEP55 inhibited the progression 
of PAAD, so CEP55’s tumor-promoting effect may 
outweigh its effect of enhancing cuproptosis to in-
hibit PAAD.

While our multi-omics analyses and in vitro ex-
periments have established CEP55 as a critical on-
cogene in PAAD, this study has certain limitations. 
First, transient knockdown in siRNA-dependent 
cell lines, while valid for initial validation, does not 
fully generalize the sustained gene suppression 
achievable by the complete knockdown approach. 
Second, While CEP55 has been identified and func-
tionally assessed, its broader biological function 
has not been fully validated. Therefore, further 
validation of CEP55 in vivo experiments is needed.

Conclusions

This study constructed a cuproptosis-related 
prognostic model for PAAD through multi-omics 
techniques. Moreover, the cancer immune micro-
environment and tumor mutational burden of two 
CRGs groups were assessed. Finally, CEP55 was 
identified as the hub gene of PAAD in this study. 
We verified the biological function of CEP55 in 
vitro. This provides a new potential therapeutic 
target for PAAD.
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