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Background. First evaluation of the performance of MR cytometry incorporating transcytolemmal water exchange 
in predicting immunohistochemical factor status and molecular subtypes of breast cancer.
Patients and methods. We prospectively enrolled 90 breast cancer patients in the study. For each participant, 
pulsed gradient spin-echo (PGSE) with diffusion time of 70 ms and oscillating gradient spin-echo (OGSE) diffusion-
weighted imaging of 25 Hz and 50 Hz were performed on a 3T MRI scanner. Time-dependent apparent diffusion 
coefficients (ADC) and microstructural parameters including cell diameter , intracellular volume fraction , water 
exchange rate constant , and apparent extracellular diffusivity  were calculated. Single- and multi-variable 
logistic regression analyses were performed to evaluate their performance in identifying immunohistochemistry (IHC) 
factor status and molecular subtypes. The area under the receiver operating characteristic curve (AUC) was com-
puted.
Results. The multi-variable regression models generated from MR cytometry-derived metrics provided higher AUC 
compared to those from time-dependent ADC metrics, i.e. 0.744 vs. 0.645 for estrogen receptor (ER), 0.727 vs. 0.688 
for progesterone receptor (PR), 0.734 vs.0.623 for HER2, and 0.679 vs. 0.633 for Ki67, 0.751 vs. 0.644 for Triple-Negative 
Breast Cancer (TNBC), 0.819 vs. 0.765 for HER2-enriched, 0.730 vs. 0.659 for Luminal A, 0.633 vs. 0.633 for Luminal B. MR 
cytometry with transcytolemmal water exchange (JOINT and EXCHANGE) outperformed the original one with the 
impermeable model (IMPULSED) in predicting PR (0.727 vs. 0.705), HER2 (0.734 vs. 0.689), Ki67 (0.679 vs. 0.646), TNBC 
(0.751 vs. 0.748) and HER2-enriched (0.819 vs. 0.739), Luminal A (0.730 vs. 0.666), Luminal B (0.633 vs. 0.630).
Conclusions. MR cytometry outperformed conventional ADC measurements in clinical breast cancer subtyping. 
Incorporating transcytolemmal water exchange further enhanced classification accuracy.
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Introduction

Breast cancer stands as one of the most prevalent 
malignant diseases affecting women, with its inci-
dence and mortality rates rising annually.1 There 
are significant differences in terms of malignancy, 
therapeutic strategies and prognosis across breast 
cancers with different molecular subtypes.2-4 
Accurate subtype identification is crucial for de-
veloping personalized treatment plans for indi-
vidual patients to reduce mortality and improve 
prognosis.5 Currently, the categorization of breast 
cancers usually depends on multiple biomarkers 
from pathological immunohistochemistry (IHC) 
examinations, and the corresponding subtypes 
are primarily determined by invasive biopsies 
with the risks of oedema, bleeding, and infection.⁶ 
Furthermore, biopsy may lead to missed detection 
due to the limitation of a localized pathological 
puncture point, which cannot reflect the overall 
situation of the lesion.7

Imaging techniques that allow for both non-
invasive and wide-area detection provide various 
promising approaches for the diagnosis of breast 
cancer.8 Among them, MRI has been widely used in 
breast imaging, with its advantages of high image 
resolution, no ionizing radiation, and multi-contrast 
imaging, which greatly compensates for the limita-
tions of biopsies and provides more comprehensive 
information.9 Diffusion MRI (dMRI) can reveal tu-
mor microstructures by non-invasively probing the 
diffusion movement of water molecules without any 
exogenous contrast agents. The dMRI-derived met-
ric, apparent diffusion coefficient (ADC), has been 
widely used in the clinical diagnosis10 and post-
treatment evaluation11 of breast cancers. However, 
this metric represents non-specific, averaged infor-
mation influenced by several microstructural fea-
tures with competing effects, reducing diagnostic 
sensitivity.12 A meta-analysis13 has shown that the 
ADC values significantly overlapped among differ-
ent breast cancer subtypes. 

Current ADC measurements in clinics usu-
ally adopt a single diffusion time . Over the 
last decade, there has been an increasing interest 
in obtaining ADCs with different . Because 
the measurement of water diffusion is depend-
ent on , ADCs with varying  probe vary-
ing length scales.14 Therefore, multiple -based 
ADC provide more comprehensive information 
on tissue microstructure. Such a technique is 
usually termed time-dependent diffusion MRI 
(td-dMRI), which has been widely used in cancer 
imaging.15,16 However, time-dependent ADCs still 

represent the averaged diffusion behavior so it suf-
fers from low specificity of tissue properties. The 
recently emerging technique of MR cytometry im-
aging17-19 provides a potential approach to address 
the above limitation, which implements multiple-
b and multiple-  acquisitions, combined with 
multi-compartmental biophysical modeling, to 
decouple different microstructural parameters, 
such as cell diameter , intracellular volume frac-
tion , and apparent extracellular diffusivity 
. The Imaging Microstructural Parameters Using 
Limited Spectrally Edited Diffusion (IMPULSED)17, 
a specific form of MR cytometry, incorporates both 
the pulsed-gradient spin-echo (PGSE) and oscillat-
ing gradient spin-echo (OGSE)20 acquisitions for a 
much broader diffusion time range for more com-
prehensive length scale information, and more 
importantly, it is readily achievable on 3T MRI 
scanners with a clinically-feasible scan time of ~6 
minutes.17 For this reason, IMPULSED has been 
implemented in breast cancer17,21,22, prostate can-
cer23 and gliomas.24 

Wang et al.22 have validated the diagnostic ef-
ficacy of IMPULSED17 to classify molecular sub-
types of breast cancer. Despite the successful ap-
plications, IMPULSED assumes tumor cells as 
impermeable spheres (without transcytolemmal 
water exchange), so that dMRI signals from intra- 
and extracellular compartments are independent 
of each other, thus greatly simplifying biophysi-
cal modeling.17,25,26 However, neglecting transcy-
tolemmal water exchange will lead to a significant 
underestimation of intracellular volume fractions 
and cellularity from MR cytometry.27 On the other 
hand, the water exchange rate is highly correlated 
with the cell membrane permeability, which can 
reflect pathological changes within tumors.12,28 
To obtain this important biophysical information, 
several methods have been proposed recently, 
such as JOINT18 and EXCHANGE.19 This pro-
spective study is the first to evaluate the efficacy 
of JOINT and EXCHANGE, which incorporated 
transcytolemmal water exchange into biophysi-
cal modeling, in predicting IHC factor status and 
molecular subtypes of breast cancer. We compared 
these methods with time-dependent ADC meas-
urements and IMPULSED.

Patients and methods
Patients 

This study was approved by the institution review 
board of the local hospital. A total of 96 patients 
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with breast cancer who underwent MRI from May 
2023 to April 2024 were prospectively collected, 
with the inclusion criteria as follows: (1) unilateral 
lesions with a diameter >1 cm; (2) no prior treat-
ment for any breast disease before the MRI exami-
nation, including biopsy, neoadjuvant therapy, and 
other anti-tumor treatments; (3) complete clinical 
pathological data available after the MRI examina-
tion. Six of ninety-six cases were excluded due to 
failure in fat suppression (n = 3), motion artifacts (n 
= 2) and multi-focal lesions (n = 1). 

dMRI acquisition

Breast dMRI acquisitions were conducted on a 3T 
MR scanner with a maximum gradient amplitude 
of 80 mT/m and a maximum slew rate of 200 T/m/s 
(MAGNETOM Prisma, Siemens Healthineers, 
Forchheim, Germany). A dedicated 16-chan-
nel phased-array breast coil was employed. A 
combined acquisition protocol lasting 6 minutes 
was used to obtain diffusion images with differ-
ent diffusion times, which included the PGSE  
(effective diffusion time ), OGSE 25Hz  
( ) and OGSE 50 Hz ( ) sequences. 
Detailed acquisition information is demonstrated 
in Supplementary Appendix 1. 

Histopathological examinations

Immunohistochemistry and fluorescence in situ 
hybridization (FISH) were performed on each par-
ticipant followed by MRI examination. According 
to the obtained status (positive or negative) of 
Estrogen Receptor (ER), Progesterone Receptor 
(PR), Human Epidermal Growth Factor Receptor-2 
(HER2) and proliferation marker (Ki67), the le-
sions were classified into Luminal A, Luminal B, 
HER2-enriched and Triple-Negative Breast Cancer 
(TNBC) subtypes (Supplementary Appendix 2).

Data analysis

Three MR cytometry methods were used to fit mi-
crostructural parameters from the acquired dMRI 
signals: IMPULSED, JOINT and EXCHANGE, 
please refer to Supplementary Materials for 
more details. There are four free parameters in 
IMPULSED, including intracellular volume frac-
tion , cell diameter , intracellular intrinsic 
diffusivity , and apparent extracellular dif-
fusivity . For JOINT and EXCHANGE, water 
exchange rate constant  was introduced as an 
additional free parameter.  was fixed as 1.56 

µm2/ms to stabilize the fitting procedure, and 
the number of free parameters remains four: 

 , , , and . Cellularity was calculated as 
.28 The data fitting platform, 

MATI29, was used to solve the microstructural pa-
rameters. The details of these MR cytometry meth-
ods can be found in Supplementary Appendix 3. 

For the conventional td-dMRI measure-
ments, ADC values at each sequence were 
obtained by fitting the multi-b signals to 

. Besides,  was calculated 
as  to quantify the 
change of ADC with diffusion time.

Regions of interest (ROIs) were manually drawn 
on the diffusion-weighted images by radiologists 
L .W. and H. B. (with six years of experience), who 
were blinded to the final pathological results. 
Surrounding fatty, muscle, cystic, hemorrhagic 

TABLE 1. Patient information and lesion characteristics

Characteristics Luminal A
(n = 26)

Luminal B
(n = 38)

TNBC 
(n = 18)

HER2-enriched 
(n = 8)

Age(years) 55.11 ± 8.52 51.16 ± 11.01 52.89 ± 8.45 51.00 ± 9.04

Tumor size(mm) 27.65 ± 6.93 27.37 ± 8.25 27.83 ± 9.93 24.50 ± 6.35

Menstruation state

   �Premenopausal 
women 11 17 5 3

   �Postmenopausal 
women 15 21 13 5

Tumor border

   Well-defined 9 10 8 4

   ill-defined 17 28 10 4

Tumor sharp

   Oval or round 21 32 11 3

   Irregular 5 6 7 5

ER status

   Positive 26 38 0 0

   Negative 0 0 18 8

PR status

   Positive 24 29 0 0

   Negative 2 9 18 8

HER2 status

   Positive 0 13 0 8

   Negative 26 25 18 0

Ki67 status

   Positive 3 27 16 6

   Negative 23 11 2 2

ER = estrogen receptor; HER2 = human epidermal growth factor receptor 2; Ki67 = nuclear 
associated antigen; PR = progesterone receptor; TNBC = triple-negative breast cancer
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and necrotic tissues were carefully excluded from 
the ROIs. The time-dependent ADC metrics and 
model-fitted microstructural parameters were cal-
culated within each voxel and then averaged over 
the whole ROI.

Statistical analysis

Statistical analysis methods varied by grouping 
strategies.

Grouping by IHC factors

There are four binary classification tasks, i.e. ER(+) 
vs. ER(-), PR(+) vs. PR(-), HER2(+) vs. HER2(-) and 
Ki67(+) vs. Ki67(-). The differences of each met-
ric were evaluated by the rank-sum test (Mann-
Whitney U test). The performance in predicting 
IHC factors were evaluated by logistic regres-
sion models in SSPS (Chicago, IL). The area un-
der the receiver operating characteristic (ROC) 
curve (AUC) was calculated to quantify the pre-
dictive efficacy. The classifiers combining differ-
ent parameters were also evaluated, specifically, 

 for ADC 

metrics,  for IMPULSED, 
and  for JOINT and 
EXCHANGE.

Grouping by molecular subtypes

This is a four-class classification task, i.e. Luminal 
A vs Luminal B vs. TNBC vs. HER2-enriched 
subtypes. Kruskal-Wallis one-way analysis of 
variance was used to evaluate the significance of 
differences in imaging metrics among the four 
molecular subtypes. Logistic regression analyses 
was also performed to identify each subtype. Four 
ROC curves and AUC values were obtained for 
each metric or their combinations.

Results 
Patient characteristics

A total of 90 patients with 90 lesions were included 
in this prospective study. Among these, 26 cases 
were Luminal A subtype, 38 cases were Luminal 
B subtype, 8 cases were HER2-enriched subtype, 
and 18 cases were TNBC subtype. The patient in-

FIGURE 1. The ADC and microstructural maps overlaid on b = 1000 s/mm2 diffusion-weighted images of five representative breast cancer patients. 

ADC = apparent diffusion coefficient; ER = estrogen receptor; d = diameter; Dex = apparent extracellular diffusivity; Din = intracellular intrinsic diffusivity; HER2 = human 
epidermal growth factor receptor 2; Ki67 = nuclear associated antigen; Kin = water exchange rate; TNBC = triple-negative breast cancer; vin = intracellular volume fraction; 
ΔADC = (ADC50Hz – ADCPGSE) / ADCPGSE 
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formation and lesion characteristics are summa-
rized in Table 1.

Microstructural feature mapping of 
breast tumors

Supplementary Figure 1 shows the PGSE and 
OGSE diffusion-weighted images for a representa-
tive patient (Luminal B subtype). The lesion con-
spicuity is acceptable. Figure 1 shows the ADC 
metrics and microstructural parameter maps for 
five representative breast cancer patients with dif-
ferent IHC factor status and molecular subtypes. 
The overall ADC values decreased with longer dif-
fusion time, i.e. . As 
shown in the red boxes, the lower ADC and , 
higher  and  were observed in the ER(+)/
PR(+) case compared to the negative case. Besides, 
 was found to be larger in the HER2(+) case. As 

indicated by the yellow box, higher cellularity was 
observed in the Ki67(+) case.

Intergroup comparison 

Figure 2 shows the results of intergroup compari-
sons in the IHC factors. For td-dMRI measure-
ments,  and  were significantly 
lower in ER(+) cases, and  was higher (p = 
0.047, 0.049 and 0.016, respectively). The PR(+) 
group also showed lower ,  , 

 and higher  (p = 0.002, 0.004, 0.005 
and 0.002, respectively). In contrast, none ADC-
related metrics were significantly different in 
the comparisons for HER2 and Ki67. For the MR 
cytometry-derived parameters, increased  was 
shown in the ER(+) group for both IMPULSED and 
JOINT (p = 0.013 and 0.030, respectively), while the 
EXCHANGE-derived  was lower (p = 0.012) and 
the IMPULSED-derived cellularity was higher 
(p = 0.027). For PR, the fitted  was also higher 
in the positive group for all three MR cytometry 
methods (p = 0.003, 0.006 and 0.006, respectively). 

TABLE 2. The intergroup comparison for the imaging metrics across four breast cancer molecular subtypes

Model Parameter TNBC
Median (IQR)

HER2-
enriched

Median (IQR)
Luminal A

Median (IQR)
Luminal B

Median (IQR) p

td-dMRI ADCPGSE 0.85 (0.49) 0.90 (0.25) 0.74 (0.25) 0.81 (0.25) 0.106

ADC25Hz 1.10 (0.51) 1.21 (0.31) 1.03 (0.19) 1.08 (0.22) 0.055

ADC50Hz 1.44 (0.52) 1.53  (0.26) 1.38 (0.18) 1.38 (0.18) 0.071

ΔADC 0.73 (0.38) 0.66 (0.29) 0.81 (0.41) 0.83 (0.42) 0.075

IMPULSE d 15.00 (1.73) 16.16 (1.85) 14.79 (1.33) 14.96 (1.07) 0.038

Vin 0.38 (0.13) 0.37 (0.07) 0.42 (0.13) 0.41 (0.09) 0.063

Dex 1.91 (0.54) 2.08 (0.28) 2.02 (0.24) 1.95 (0.32) 0.712

Din 2.09 (0.20) 2.15 (0.08) 2.07 (0.31) 2.05 (0.21) 0.598

Cellularity 0.074 (0.03) 0.058 (0.03) 0.078 (0.05) 0.075 (0.03) 0.071

JOIN d 15.73 (1.57) 17.17 (2.09) 15.65 (2.02) 16.05 (1.42) 0.031

vin 0.51 (0.15) 0.51 (0.09) 0.54 (0.09) 0.55 (0.07) 0.144

kin 18.12 (6.66) 16.38 (2.89) 15.68 (6.75) 16.74 (5.09) 0.374

Dex 2.35 (0.41) 2.54 (0.22) 2.40 (0.26) 2.37 (0.32) 0.596

Cellularity 0.081 (0.04) 0.063 (0.03) 0.083 (0.06) 0.082 (0.03) 0.114

EXCHANGE d 13.91 (1.31) 15.07 (1.79) 13.67 (1.20) 13.94 (1.07) 0.025

vin 0.58 (0.10) 0.58 (0.07) 0.58 (0.05) 0.59 (0.05) 0.280

kin 8.12 (5.50) 7.00 (3.44) 6.70 (3.9) 6.67 (2.2) 0.061

Dex 2.30 (0.45) 2.52 (0.20) 2.36 (0.31) 2.30 (0.34) 0.442

Cellularity 0.12 (0.03) 0.09 (0.03) 0.12 (0.08) 0.12 (0.03) 0.053

The numbers in bold represent there is a significant difference across four molecular subtypes.

ADC = apparent diffusion coefficient; ER = estrogen receptor; d = diameter; Dex = apparent extracellular diffusivity; Din = intracellular intrinsic diffusivity; HER2 = human 
epidermal growth factor receptor 2; IQR = Interquartile Range; kin = water exchange rate; TNBC = triple-negative breast cancer; vin = intracellular volume fraction; ΔADC 
= (ADC50Hz – ADCPGSE) / ADCPGSE 
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Additionally, the EXCHANGE-derived  and  
were lower (p = 0.047 and 0.022, respectively) and 
the IMPULSED-derived cellularity was higher (p 
= 0.027) in the PR(+) group. For HER2, the diam-
eters  were larger in the positive group, with p 
= 0.035 for IMPULSED, p = 0.006 for JOINT, and p 
= 0.038 for EXCHANGE. For Ki67, all three meth-
ods obtained lower cellularity (p = 0.029, 0.037 and 
0.037, respectively) in the positive group, while the 
EXCHANGE-derived  was higher (p = 0.026).

Table 2 shows the results of intergroup com-
parisons across the four molecular subtypes. The 
cell diameter  was the only metric that showed 
significant difference across the four breast cancer 
molecular subtypes (p = 0.038, 0.031 and 0.025 for 
IMPULSED, JOINT and EXCHANGE, respective-
ly). This microstructural parameter was found to 
be the highest in HER2-enriched subtype and low-
est in Luminal A subtype.

Predicting immunohistochemistry (IHC) 
factor status and molecular subtypes

Table 3 shows the AUC values for the prediction of 
IHC factor status. For ER, EXCHANGE-derived  
provided the highest AUC of 0.666 (95% CI, 0.552, 
0.781; p = 0.012) among the classifiers based on a 
single imaging metric. By combining multiple mi-
crostructural parameters, IMPULSED can improve 
the AUC to 0.744 (95% CI, 0.641, 0.846; p < 0.001). For 
PR, the highest AUCs based on a single metric and 
combined regression model were 0.694 ( , 95% 
CI, 0.583, 0.806; p = 0.002) and 0.727 (EXCHANGE, 
95% CI, 0.620, 0.835, p < 0.001), respectively. For 
HER2, the above two highest AUCs were 0.697 
(JOINT-derived , 95% CI, 0.567, 0.827, p = 0.006) 
and 0.734 (JOINT, 95% CI, 0.601, 0.867, p = 0.001). For 
Ki67, they were 0.640 (EXCHANGE-derived , 95% 
CI, 0.525, 0.755, p = 0.026) and 0.679 (EXCHANGE, 

FIGURE 2. Intergroup comparison of td-MRI metrics and microstructural parameters respectively fitted from IMPULSED, JOINT and EXCHANGE 
between positive and negative immunohistochemical factor status.

* = p < 0.05, ** = p < 0.01. + represents outliers
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95% CI, 0.565, 0.793, p = 0.005). In Figure 3, each 
sub-plot shows the performance in predicting the 
status of a specific IHC factor. In each sub-plot, the 
four curves respectively correspond to: the classi-
fier with the highest AUC based on a single td-dM-
RI metric ( , ,  or ), the 
classifier based on the combination of all td-dMRI 
metrics, the classifier with the highest AUC based 
on a single model-fitted microstructural parame-
ter ( , , ,  or  obtained from IMPULSED, 
JOINT, or EXCHANGE), the classifier based on 
the combination of all parameters obtained from 
a specific MR cytometry method (IMPULSED, 
JOINT, or EXCHANGE) that provided the highest 
combined AUC. 

Table 4 shows the AUC values for the prediction 
of molecular subtypes of breast cancers. For TNBC, 
EXCHANGE-derived  provided the highest 
AUC of 0.696 (95% CI, 0.561, 0.831, p = 0.01) among 
the classifiers based on a single imaging metric. 
Combining other microstructural parameters im-
proved the AUC to 0.751 (95% CI, 0.633, 0.869, p = 
0.001). For HER2-enriched, the highest AUCs based 
on a single metric and combined model were 0.809 
(JOINT-derived , 95% CI, 0.675, 0.944, p = 0.004) 
and 0.819 (JOINT, 95% CI, 0.657, 0.980, p = 0.003). 
For Luminal A, the above two values were 0.638 
(EXCHANGE-derived , 95% CI, 0.513, 0.764, p = 
0.041) and 0.730 (EXCHANGE, 95% CI, 0.616, 0.843, 
p = 0.001). For Luminal B, they are 0.622 ( , 95% 

TABLE 3. The diagnostic performance of imaging metrics for the prediction of immunohistochemistry (IHC) factor status

Model Parameter AUC (ER) AUC (PR) AUC (HER2) AUC (Ki67)

td-dMRI ADCPGSE 0.631 (0.508, 0.755) 0.693 (0.584, 0.803) 0.594 (0.470, 0.718) 0.553 (0.427, 0.678)

ADC25Hz 0.630 (0.508, 0.752) 0.682 (0.571, 0.793) 0.639 (0.055, 0.767) 0.580 (0.458, 0.702)

ADC50Hz 0.624 (0.493, 0.755) 0.674 (0.560, 0.788) 0.627 (0.500, 0.755) 0.571 (0.449, 0.693)

ΔADC 0.660 (0.540, 0.779) 0.694 (0.583, 0.806) 0.468 (0.328, 0.608) 0.496 (0.369, 0.623)

Combined 0.645 (0.522, 0.768) 0.688 (0.576, 0.800) 0.623 (0.476, 0.770) 0.633 (0.516, 0.750)

IMPULSED d 0.590 (0.454, 0.726) 0.621 (0.501, 0.742) 0.652 (0.512, 0.793) 0.612 (0.494, 0.730)

Vin 0.664 (0.550, 0.779) 0.686 (0.576, 0.796) 0.554 (0.433, 0.675) 0.545 (0.419, 0.670)

Dex 0.529 (0.389, 0.669) 0.587 (0.461, 0.714) 0.518 (0.337, 0.659) 0.558 (0.438, 0.679)

Din 0.540 (0.407, 0.673) 0.595 (0.473, 0.716) 0.567 (0.433, 0.700) 0.524 (0.399, 0.649)

Cellularity 0.646 (0.521, 0.771) 0.638 (0.519, 0.758) 0.567 (0.426, 0.708) 0.638 (0.521, 0.754)

Combined 0.744 (0.641, 0.846) 0.705 (0.597, 0.813) 0.689 (0.552, 0.826) 0.646 (0.532, 0.760)

JOIN d 0.575 (0.443, 0.707) 0.601 (0.481, 0.721) 0.697 (0.567, 0.827) 0.595 (0.476, 0.714)

vin 0.643 (0.523, 0.764) 0.673 (0.559, 0.787) 0.453 (0.330, 0.577) 0.517 (0.394, 0.641)

kin 0.623 (0.507, 0.740) 0.535 (0.415, 0.655) 0.459 (0.335, 0.583) 0.520 (0.392, 0.649)

Dex 0.487 (0.351, 0.623) 0.601 (0.478, 0.724) 0.536 (0.399, 0.673) 0.524 (0.403, 0.646)

Cellularity 0.619 (0.490, 0.747) 0.613 (0.491, 0.736) 0.577 (0.438, 0.716) 0.632 (0.513, 0.750)

Combined 0.731 (0.625, 0.837) 0.718 (0.609, 0.827) 0.734 (0.601, 0.867) 0.666 (0.552, 0.781)

EXCHANGE d 0.584 (0.450, 0.718) 0.624 (0.504, 0.744) 0.650 (0.510, 0.790) 0.640 (0.525, 0.755)

vin 0.596 (0.466, 0.725) 0.671 (0.555, 0.788) 0.511 (0.380, 0.642) 0.466 (0.343, 0.590)

kin 0.666 (0.552, 0.781) 0.643 (0.526, 0.760) 0.528 (0.407, 0.650) 0.547 (0.420, 0.675)

Dex 0.521 (0.382, 0.661) 0.608 (0.483, 0.732) 0.562 (0.424, 0.699) 0.522 (0.401, 0.643)

Cellularity 0.618 (0.490, 0.745) 0.617 (0.496, 0.739) 0.594 (0.445, 0.732) 0.632 (0.515, 0.748)

Combined 0.725 (0.610, 0.839) 0.727 (0.620, 0.835) 0.668 (0.542, 0.794) 0.679 (0.565, 0.793)

AUC values are presented as mean (bootstrapped 95% CIs). The numbers in bold represent the highest AUC values respectively achieved by the single-variable regression 
model and multi-variable (combined) regression model. In the combined model, all the parameters obtained by each method was included.

ADC = apparent diffusion coefficient; d = diameter; Dex = apparent extracellular diffusivity; Din = intracellular intrinsic diffusivity; ER = estrogen receptor; HER2 = human 
epidermal growth factor receptor 2; Ki67 = nuclear associated antigen; Kin = water exchange rate; PR = progesterone receptor; Vin =  intracellular volume fraction; ΔADC 
= (ADC50Hz – ADCPGSE) / ADCPGSE
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However, the results of previous studies are con-
troversial. Several publications10,30,31 reported that 
the ADC values were lower in ER(+) and PR(+) 
breast cancers, whereas Park et al.32 showed no sig-
nificant differences in ADC values between ER(+) 
and ER(-), as well as PR(+) and PR(-). Besides, some 
studies30-33 demonstrated the higher ADC in the 
HER2(+) group, whereas others have shown the 
opposite results34 or no significant difference.35 
For Ki67, the conclusion also remains uncertain. 
Shen et al.36 found that the ADC metrics decreased 
with higher Ki-67 labeling index, while other find-
ings33,37 showed that there was no significant dif-
ference between high and low Ki67 expression. 
Some advanced methods, such as intra-voxel inco-
herent motion (IVIM) imaging38,39 and diffusion-
kurtosis imaging (DKI)39, can improve the efficacy 
to distinguish the status of ER and PR, but failed 
to differentiate HER2 and Ki67. Recently, Lima et 
al.40 utilized time-dependent ADC measurements 
obtained by PGSE and OGSE to characterize 
breast cancer based on IHC markers. Furthermore, 
Ba et al.21 and Wang et al.22 have implemented the 
emerging MR cytometry method IMPULSED to 
extract quantitative microstructural information 
of breast tumors, and the derived parameters has 
been shown to be effective in the prediction of IHC 
factor status, molecular subtypes and treatment 
response to neoadjuvant chemotherapy. However, 
the biophyscial model used in IMPULSED neglect-
ed transcytolemmal water exchange, resulting in 
the underestimation of  and unavailability of 
membrane permeability.27 This study investigated 
the efficacy of the MR cytometry methods that in-
corporate water exchange in predicting IHC fac-
tor status and molecular subtypes. The systematic 
comparisons between the different MR cytometry 
methods and the td-dMRI measurements provide 
guidance for clinical application of MR cytometry.

In this study, the lower  and  
values and higher  were observed in the ER(+) 
group compared to ER(-), similarly, all three ADC 
metrics were lower and  values were higher 
in the PR(+) group, which are consistent with the 
previous results.30,31,40 Some studies40,41 suggested 
that the lower ADC values for ER(+) and PR(+) 
may be due to lower cell membrane permeability, 
which has been reflected in the results of micro-
structural parameters, the EXCHANGE-derived 
transcytolemmal water exchange rate constant  
was lower in the ER(+) and PR(+) groups, indicat-
ing lower membrane permeability. In addition, 
the IMPULSED and JOINT-derived  was larg-
er in the ER(+) group, and all three quantitative 

FIGURE 3. The performance of derived parameters in predicting 
immunohistochemistry (IHC) factor status. In each sub-plot, the four curves 
respectively correspond to: the classifier with the highest AUC based on a single 
td-dMRI metric (ADCPSGE, ADC25Hz, ADC50Hz or ΔADC), the classifier based on the 
combination of all td-dMRI metrics, the classifier with the highest AUC based on 
a single model-fitted microstructural parameter (vin, d, kin, Dex or Din obtained from 
IMPULSED, JOINT, or EXCHANGE), the classifier based on the combination of all 
parameters obtained from a specific MR cytometry method (IMPULSED, JOINT, or 
EXCHANGE) that provided the highest combined AUC. (A) ER; (B) PR; (C) HER2; (D) 
Ki67. The numbers within the parentheses in the legend represent the AUC of the 
corresponding parameters. 

ADC = apparent diffusion coefficient; ER = estrogen receptor; d = diameter; Dex = apparent 
extracellular diffusivity; Din = intracellular intrinsic diffusivity; HER2 = human epidermal 
growth factor receptor 2; Ki67 = nuclear associated antigen; kin = water exchange rate; PR = 
progesterone receptor; vin =  intracellular volume fraction

CI, 0.506, 0.738, p = 0.049) and 0.633 (EXCHANGE, 
95% CI, 0.518, 0.748, p = 0.032). In Figure 4, each sub-
plot shows the performance in predicting a spe-
cific molecular subtype. The representative ROC 
curves are selected in the same way as in Figure 3. 

Discussion

Determining the IHC factor status and molecular 
subtypes of breast cancer is an important refer-
ence for the development of appropriate clinical 
treatment regimes. The dMRI-derived ADC met-
rics have shown potential in the prediction of the 
IHC factor status and molecular subtypes10, with-
out the injection of contrast agents in DCE MRI. 

A B
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methods-derived  was larger in the PR(+) group, 
which may be related to the increased pathologi-
cal cellularity with ER or PR overexpression in 
breast tumors.42 For the intergroup comparison 
between HER2(+) and HER2(-), there was no sig-
nificant difference in ADC-related metrics, this 
may be due to the fact that HER2 overexpression 
leads to both increased cell proliferation and an-
giogenesis, whereas they have opposite impacts 
on ADC values.30 However, the cell diameter  
obtained from all three MR cytometry methods 
was significantly larger in the HER2(+) group, 
which was consistent with the pathological find-
ing that HER2-overexpressing breast cancer has 
increased cell size.43 Finally, for the prediction of 
Ki67 factor, only cellularity and the EXCHANGE-
derived  showed significant difference, but we are 
still unclear about the reasons behind this. On the 
other hand, for different molecular subtypes, the 
model-fitted  values were the only metrics exhib-
iting significant difference among these subtypes. 
Larger  was observed in HER2-enriched subtype 
compared to non-HER2-enriched subtype, which 
may be attributed to the HER2 overexpression 
(larger  in the HER(+) group). 

In this study, we also systemically compared 
the diagnosis performance of three MR cytometry 
methods in predicting IHC factor status and molec-
ular subtypes. For the classifiers based on a single 
metric,  provided the highest AUC in the pre-
diction of PR status and Luminal B subtype; JOINT 
obtained the highest AUC in predicting HER2 sta-
tus and HER2-enriched subtype; EXCHANGE per-
formed best in predicting ER, Ki67 status, TNBC 
and Luminal A subtypes. For the classifiers based 
on the combined regression model, IMPULSED 
provided the highest AUC in predicting ER status; 
JOINT obtained the highest AUC in the predic-
tion of HER2 status and HER2-enriched subtype; 
EXCHANGE achieved the highest AUC in the pre-
diction of PR status, Ki67 status, TNBC, Luminal A 
and Luminal B subtypes. The above results show 
that MR cytometry methods may provide better 
diagnostic efficacy in the prediction of IHC factor 
status and molecular subtypes, compared to tradi-
tional td-dMRI measurements. Meanwhile, the MR 
cytometry methods incorporating water exchange 
(JOINT and EXCHANGE) improved the diagnos-
tic efficacy compared to IMPULSED (except for 
ER status). Although previous numerical simula-
tion and in vitro cell experiments18,19 demonstrated 
that JOINT and EXCHANGE, which incorporated 
water exchange, obtained more accurate estima-
tion of  and an additional biophysical parameter 

, our study found only minor improvements in 
breast cancer subtyping when water exchange is 
incorporated into MR cytometry. Thus, while it is 
desirable to incorporate such objective biophysical 
phenomena into the biophysical model, improved 
model accuracy does not necessarily translate into 
superior clinical diagnostic performance.

There are several limitations in this study. First, 
the data were collected in a single center with lim-
ited sample size, especially the HER2-enriched 
subtype. It is necessary to include more breast can-
cer patients from multiple hospitals or institutions 
and validate the results more comprehensively. 
Second, our study lacks the correlation analysis 
between the MR cytometry-derived parameters 
and histopathological results. Such analysis will 

FIGURE 4.  The performance of derived parameters in predicting breast cancer 
molecular subtypes. In each sub-plot, the four curves respectively correspond 
to: the classifier with the highest AUC based on a single td-dMRI metric (ADCPSGE, 
ADC25Hz, ADC50Hz or ΔADC), the classifier based on the combination of all td-dMRI 
metrics, the classifier with the highest AUC based on a single model-fitted 
microstructural parameter (vin, d, kin, Dex or Din obtained from IMPULSED, JOINT, or 
EXCHANGE), the classifier based on the combination of all parameters obtained 
from a specific MR cytometry method (IMPULSED, JOINT, or EXCHANGE) that 
provided the highest combined AUC. (A) TNBC; (B) HER2-enriched; (C) Luminal 
A; (D) Luminal B. The numbers within the parentheses in the legend represent the 
AUC of the corresponding parameters. 

ADC = apparent diffusion coefficient; AUC = area under the receiver operating characteristic 
curve; TNBC = triple-negative breast cancer; d = diameter; Dex = apparent extracellular 
diffusivity; Din = intracellular intrinsic diffusivity; Kin = water exchange rate; PR = progesterone 
receptor; Vin =  intracellular volume fraction
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provide more reliable validation on the imaging 
results and more comprehensive comparisons 
between the quantitative methods which will be 
included in our future work. Third, the b values 
of the OGSE sequence with 50Hz were relatively 
low (≤500s/mm2) due to the limitations of gradient 
performance. Despite our best efforts to eliminate 
the impact of IVIM before model fitting, molecular 
markers of angiogenesis such as micro-vessel den-
sity44 still introduce bias in the estimation of mi-
crostructural parameters, especially when using 
low b values. Fortunately, the modern whole-body 
ultra-high-performance gradients can provide 
higher b values for high-frequency OGSE when 
PNS allows. Fourth, each imaging metric was aver-
aged across the whole ROI, which lost the informa-

tion of spatial heterogeneity within breast tumors. 
Surviving cells, dead cells and necrotic regions 
may co-exist in each ROI. This spatial heterogene-
ity can be captured by histogram analysis.38 

In summary, this study was the first to evalu-
ate the clinical performance of MR cytometry 
incorporating water exchange in predicting IHC 
factor status and molecular subtypes of breast 
cancer, and comprehensively compared the de-
rived microstructural parameters obtained and 
conventional td-dMRI metrics. Our results showed 
that advanced MR cytometry outperformed tra-
ditional ADC measurements. Incorporating wa-
ter exchange into MR cytometry methods further 
improved the diagnosis performance. Specifically, 
the results based on the multi-variable regression 

TABLE 4. The diagnostic performance of imaging metrics for the prediction of molecular subtypes

Model Parameter AUC (TNBC) AUC (HER2-
enriched) AUC (Luminal A) AUC (Luminal B)

ADC ADCPGSE 0.617 (0.470, 0.763) 0.681 (0.519, 0.844) 0.570 (0.438, 0.703) 0.577 (0.458, 0.697)

ADC25Hz 0.518 (0.435, 0.727) 0.745 (0.614, 0.877) 0.600 (0.470, 0.729) 0.551 (0.429, 0.672)

ADC50Hz 0.575 (0.411, 0.739) 0.744 (0.624, 0.863) 0.576 (0.449, 0.703) 0.566 (0.446, 0.686)

ΔADC 0.648 (0.511, 0.785) 0.360 (0.141, 0.579) 0.474 (0.340, 0.609) 0.622 (0.506, 0.738)

Combined 0.644 (0.501, 0.786) 0.765 (0.623, 0.907) 0.659 (0.538, 0.781) 0.633 (0.517, 0.748)

IMPULSED d 0.519 (0.316, 0.676) 0.784 (0.609, 0.958) 0.614 (0.487, 0.741) 0.490 (0.370, 0.610)

Vin 0.657 (0.522, 0.793) 0.651 (0.489, 0.813) 0.572 (0.433, 0.711) 0.593 (0.475, 0.710)

Dex 0.537 (0.367, 0.707) 0.582 (0.375, 0.790) 0.565 (0.445, 0.684) 0.558 (0.436, 0.680)

Din 0.507 (0.348, 0.666) 0.622 (0.468, 0.776) 0.514 (0.376, 0.653) 0.533 (0.412, 0.654)

Cellularity 0.593 (0.447, 0.738) 0.720 (0.503, 0.936) 0.606 (0.474, 0.737) 0.455 (0.336, 0.574)

Combined 0.748 (0.629, 0.868) 0.739 (0.531, 0.947) 0.666 (0.544, 0.789) 0.630 (0.513, 0.747)

JOIN d 0.519 (0.367, 0.671) 0.809 (0.675, 0.944) 0.590 (0.460, 0.719) 0.515 (0.394, 0.635)

vin 0.644 (0.496, 0.791) 0.611 (0.438, 0.785) 0.545 (0.412, 0.678) 0.593 (0.475, 0.712)

kin 0.630 (0.489, 0.772) 0.486 (0.349, 0.624) 0.558 (0.414, 0.701) 0.541 (0.420, 0.663)

Dex 0.521 (0.363, 0.679) 0.642 (0.438, 0.845) 0.507 (0.383, 0.631) 0.539 (0.417, 0.662)

Cellularity 0.549 (0.396, 0.703) 0.733 (0.537, 0.929) 0.584 (0.450, 0.718) 0.461 (0.342, 0.580)

Combined 0.742 (0.616, 0.869) 0.819 (0.657, 0.980) 0.648 (0.525, 0.770) 0.609 (0.492, 0.727)

EXCHANGE d 0.509 (0.357, 0.661) 0.784 (0.602, 0.965) 0.638 (0.513, 0.764) 0.516 (0.396, 0.636)

vin 0.627 (0.477, 0.778) 0.532 (0.309, 0.755) 0.492 (0.364, 0.621) 0.601 (0.481, 0.721)

kin 0.696 (0.561, 0.831) 0.459 (0.299, 0.618) 0.543 (0.402, 0.684) 0.606 (0.489, 0.723)

Dex 0.478 (0.313,0.644) 0.666 (0.468, 0.865) 0.514 (0.390, 0.637) 0.553 (0.431, 0.674)

Cellularity 0.542 (0.393, 0.692) 0.756 (0.559, 0.953) 0.620 (0.490, 0.750) 0.488 (0.368, 0.608)

Combined 0.751 (0.633, 0.869) 0.784 (0.598, 0.969) 0.730 (0.616, 0.843) 0.633 (0.518, 0.748)

AUC values are presented as mean (bootstrapped 95% CIs). The numbers in bold represent the highest AUC values respectively achieved by the single-variable regression 
model and multi-variable (combined) regression model. In the combined model, all the parameters obtained by each method was included.

ADC = apparent diffusion coefficient; d = diameter; Dex = apparent extracellular diffusivity; Din = intracellular intrinsic diffusivity; Kin = water exchange rate; PR = 
progesterone receptor; TNBC = triple-negative breast cancer; Vin =  intracellular volume fraction; ΔADC = (ADC50Hz – ADCPGSE) / ADCPGSE
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models showed that: IMPULSED performed best in 
predicting ER status; JOINT was more suitable for 
predicting HER2 status and HER2-enriched sub-
type; EXCHANGE can provide the highest AUC in 
predicting PR and Ki67 status, TNBC, Luminal A 
and Luminal B subtypes.
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