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Background. First evaluation of the performance of MR cytometry incorporating franscytolemmal water exchange
in predicting immunohistochemical factor status and molecular subtypes of breast cancer.

Patients and methods. We prospectively enrolled 90 breast cancer patients in the study. For each participant,
pulsed gradient spin-echo (PGSE) with diffusion time of 70 ms and oscillating gradient spin-echo (OGSE) diffusion-
weighted imaging of 25 Hz and 50 Hz were performed on a 3T MRI scanner. Time-dependent apparent diffusion
coefficients (ADC) and microstructural parameters including cell diameter d, intracellular volume fraction v;,,, water
exchange rate constant k;,, and apparent extracellular diffusivity D,, were calculated. Single- and multi-variable
logistic regression analyses were performed to evaluate their performance in identifying immunohistochemistry (IHC)
factor status and molecular subtypes. The area under the receiver operating characteristic curve (AUC) was com-
puted.

Results. The multi-variable regression models generated from MR cytometry-derived metrics provided higher AUC
compared to those from time-dependent ADC metrics, i.e. 0.744 vs. 0.645 for estrogen receptor (ER), 0.727 vs. 0.688
for progesterone receptor (PR), 0.734 vs.0.623 for HER2, and 0.679 vs. 0.633 for Kié7, 0.751 vs. 0.644 for Triple-Negative
Breast Cancer (TNBC), 0.819 vs. 0.765 for HER2-enriched, 0.730 vs. 0.659 for Luminal A, 0.633 vs. 0.633 for Luminal B. MR
cytometry with transcytolemmal water exchange (JOINT and EXCHANGE) outperformed the original one with the
impermeable model (IMPULSED) in predicting PR (0.727 vs. 0.705), HER2 (0.734 vs. 0.689), Ki67 (0.679 vs. 0.646), TNBC
(0.751 vs. 0.748) and HER2-enriched (0.819 vs. 0.739), Luminal A (0.730 vs. 0.666), Luminal B (0.633 vs. 0.630).
Conclusions. MR cytometry outperformed conventional ADC measurements in clinical breast cancer subtyping.
Incorporating transcytolemmal water exchange further enhanced classification accuracy.
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Radiol Oncol 2025; 59(3): 337-348. doi: 10.2478/raon-2025-0044

337



338

Wu L et al. / Evaluating MR cytometry in breast cancer subtyping

Introduction

Breast cancer stands as one of the most prevalent
malignant diseases affecting women, with its inci-
dence and mortality rates rising annually.! There
are significant differences in terms of malignancy,
therapeutic strategies and prognosis across breast
cancers with different molecular subtypes.?*
Accurate subtype identification is crucial for de-
veloping personalized treatment plans for indi-
vidual patients to reduce mortality and improve
prognosis.® Currently, the categorization of breast
cancers usually depends on multiple biomarkers
from pathological immunohistochemistry (IHC)
examinations, and the corresponding subtypes
are primarily determined by invasive biopsies
with the risks of oedema, bleeding, and infection.t
Furthermore, biopsy may lead to missed detection
due to the limitation of a localized pathological
puncture point, which cannot reflect the overall
situation of the lesion.”

Imaging techniques that allow for both non-
invasive and wide-area detection provide various
promising approaches for the diagnosis of breast
cancer.®* Among them, MRI has been widely used in
breast imaging, with its advantages of high image
resolution, no ionizing radiation, and multi-contrast
imaging, which greatly compensates for the limita-
tions of biopsies and provides more comprehensive
information.’ Diffusion MRI (dMRI) can reveal tu-
mor microstructures by non-invasively probing the
diffusion movement of water molecules without any
exogenous contrast agents. The dMRI-derived met-
ric, apparent diffusion coefficient (ADC), has been
widely used in the clinical diagnosis®® and post-
treatment evaluation" of breast cancers. However,
this metric represents non-specific, averaged infor-
mation influenced by several microstructural fea-
tures with competing effects, reducing diagnostic
sensitivity.’>? A meta-analysis'® has shown that the
ADC values significantly overlapped among differ-
ent breast cancer subtypes.

Current ADC measurements in clinics usu-
ally adopt a single diffusion time ty;ry. Over the
last decade, there has been an increasing interest
in obtaining ADCs with different ty;rs. Because
the measurement of water diffusion is depend-
ent on tyirr, ADCs with varying tg;¢s probe vary-
ing length scales."* Therefore, multiple t,;s-based
ADC provide more comprehensive information
on tissue microstructure. Such a technique is
usually termed time-dependent diffusion MRI
(t,-dMRI), which has been widely used in cancer
imaging.>® However, time-dependent ADCs still
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represent the averaged diffusion behavior so it suf-
fers from low specificity of tissue properties. The
recently emerging technique of MR cytometry im-
aging” provides a potential approach to address
the above limitation, which implements multiple-
b and multiple-ty;ss acquisitions, combined with
multi-compartmental biophysical modeling, to
decouple different microstructural parameters,
such as cell diameter d, intracellular volume frac-
tion v;,, and apparent extracellular diffusivity D,
. The Imaging Microstructural Parameters Using
Limited Spectrally Edited Diffusion (IMPULSED),
a specific form of MR cytometry, incorporates both
the pulsed-gradient spin-echo (PGSE) and oscillat-
ing gradient spin-echo (OGSE)® acquisitions for a
much broader diffusion time range for more com-
prehensive length scale information, and more
importantly, it is readily achievable on 3T MRI
scanners with a clinically-feasible scan time of ~6
minutes.” For this reason, IMPULSED has been
implemented in breast cancer”???, prostate can-
cer® and gliomas.?

Wang et al.?? have validated the diagnostic ef-
ficacy of IMPULSEDY to classify molecular sub-
types of breast cancer. Despite the successful ap-
plications, IMPULSED assumes tumor cells as
impermeable spheres (without transcytolemmal
water exchange), so that dMRI signals from intra-
and extracellular compartments are independent
of each other, thus greatly simplifying biophysi-
cal modeling.”?>2?¢ However, neglecting transcy-
tolemmal water exchange will lead to a significant
underestimation of intracellular volume fractions
and cellularity from MR cytometry.” On the other
hand, the water exchange rate is highly correlated
with the cell membrane permeability, which can
reflect pathological changes within tumors.'?
To obtain this important biophysical information,
several methods have been proposed recently,
such as JOINT® and EXCHANGE.” This pro-
spective study is the first to evaluate the efficacy
of JOINT and EXCHANGE, which incorporated
transcytolemmal water exchange into biophysi-
cal modeling, in predicting IHC factor status and
molecular subtypes of breast cancer. We compared
these methods with time-dependent ADC meas-
urements and IMPULSED.

Patients and methods
Patients

This study was approved by the institution review
board of the local hospital. A total of 96 patients
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with breast cancer who underwent MRI from May
2023 to April 2024 were prospectively collected,
with the inclusion criteria as follows: (1) unilateral
lesions with a diameter >1 cm; (2) no prior treat-
ment for any breast disease before the MRI exami-
nation, including biopsy, neoadjuvant therapy, and
other anti-tumor treatments; (3) complete clinical
pathological data available after the MRI examina-
tion. Six of ninety-six cases were excluded due to
failure in fat suppression (n = 3), motion artifacts (n
= 2) and multi-focal lesions (n = 1).

dMRI acquisition

Breast dMRI acquisitions were conducted on a 3T
MR scanner with a maximum gradient amplitude
of 80 mT/m and a maximum slew rate of 200 T/m/s
(MAGNETOM Prisma, Siemens Healthineers,
Forchheim, Germany). A dedicated 16-chan-
nel phased-array breast coil was employed. A
combined acquisition protocol lasting 6 minutes
was used to obtain diffusion images with differ-
ent diffusion times, which included the PGSE
(effective diffusion time t; = 70ms), OGSE 25Hz
(tq = 5ms) and OGSE 50 Hz (t; = 5ms) sequences.
Detailed acquisition information is demonstrated
in Supplementary Appendix 1.

Histopathological examinations

Immunohistochemistry and fluorescence in situ
hybridization (FISH) were performed on each par-
ticipant followed by MRI examination. According
to the obtained status (positive or negative) of
Estrogen Receptor (ER), Progesterone Receptor
(PR), Human Epidermal Growth Factor Receptor-2
(HER2) and proliferation marker (Ki67), the le-
sions were classified into Luminal A, Luminal B,
HER2-enriched and Triple-Negative Breast Cancer
(TNBC) subtypes (Supplementary Appendix 2).

Data analysis

Three MR cytometry methods were used to fit mi-
crostructural parameters from the acquired dMRI
signals: IMPULSED, JOINT and EXCHANGE,
please refer to Supplementary Materials for
more details. There are four free parameters in
IMPULSED, including intracellular volume frac-
tion vy, cell diameter d, intracellular intrinsic
diffusivity Dy, and apparent extracellular dif-
fusivity D,y. For JOINT and EXCHANGE, water
exchange rate constant k;, was introduced as an
additional free parameter. D;, was fixed as 1.56

TABLE 1. Patient information and lesion characteristics
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Characteristics le:‘lnza ;)A Ll{?in:g)s (;ZB]CS) HER2(;]e:|;i3§hed
Age(years) 55.11£8.52  51.16+11.01 52.89+8.45 51.00+9.04
Tumor size(mm) 27.65+6.93 2737 +8.25 27.83+993 24.50+6.35
Menstruation state
Sjgmggomusc' il 17 5 3
a%sr:gi”omuso' 15 21 13 5
Tumor border
Well-defined 9 10 8 4
ill-defined 17 28 10 4
Tumor sharp
Oval or round 21 32 1 3
Irregular 5 6 7 5
ER status
Positive 26 38 0 0
Negative 0 0 18 8
PR status
Positive 24 29 0 0
Negative 2 9 18 8
HER2 status
Positive 0 13 0 8
Negative 26 25 18 0
Kié7 status
Positive 3 27 16 6
Negative 23 n 2 2

ER = estrogen receptor; HER2 = human epidermal growth factor receptor 2; Kié7 = nuclear
associated antigen; PR = progesterone receptor; TNBC = friple-negative breast cancer

pm?/ms to stabilize the fitting procedure, and
the number of free parameters remains four:
Vin, d, Dey, and ky,. Cellularity was calculated as
2(3vp/2m - 100 )?/3 /d?28 The data fitting platform,
MATI?, was used to solve the microstructural pa-
rameters. The details of these MR cytometry meth-
ods can be found in Supplementary Appendix 3.

For the conventional t;-dMRI measure-
ments, ADC values at each sequence were
obtained by fitting the multi-b signals to
S = exp(—b - ADC. Besides, AADC was calculated
as (ADCsoy, — ADCpgsg)/ADCpgsg to quantify the
change of ADC with diffusion time.

Regions of interest (ROIs) were manually drawn
on the diffusion-weighted images by radiologists
L W. and H. B. (with six years of experience), who
were blinded to the final pathological results.
Surrounding fatty, muscle, cystic, hemorrhagic
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FIGURE 1. The ADC and microstructural maps overlaid on b = 1000 s/mm? diffusion-weighted images of five representative breast cancer patients.

ADC = apparent diffusion coefficient; ER = estrogen receptor; d = diameter; D, = apparent extracellular diffusivity; D, = intracellular intrinsic diffusivity; HER2 = human
epidermal growth factor receptor 2; Kié7 = nuclear associated antigen; K,, = water exchange rate; TNBC = triple-negative breast cancer; v,, = intracellular volume fraction;
AADC = (ADC,,,, - ADC,.) / ADC,qe

and necrotic tissues were carefully excluded from
the ROIs. The time-dependent ADC metrics and
model-fitted microstructural parameters were cal-
culated within each voxel and then averaged over
the whole ROI.

Statistical analysis

Statistical analysis methods varied by grouping
strategies.

Grouping by IHC factors

There are four binary classification tasks, i.e. ER(+)
vs. ER(), PR vs. PR(), HER2(#) vs. HER2(-) and
Ki67(+) vs. Ki67(-). The differences of each met-
ric were evaluated by the rank-sum test (Mann-
Whitney U test). The performance in predicting
IHC factors were evaluated by logistic regres-
sion models in SSPS (Chicago, IL). The area un-
der the receiver operating characteristic (ROC)
curve (AUC) was calculated to quantify the pre-
dictive efficacy. The classifiers combining differ-
ent parameters were also evaluated, specifically,
(ADCpgse, ADCyspz, ADCsony AADC) for  ADC
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metrics, (d, Vin, Doy, Din, cellularity) for IMPULSED,
and (d, Vi, kin, Dey, cellularity) for JOINT and
EXCHANGE.

Grouping by molecular subtypes

This is a four-class classification task, i.e. Luminal
A vs Luminal B vs. TNBC vs. HER2-enriched
subtypes. Kruskal-Wallis one-way analysis of
variance was used to evaluate the significance of
differences in imaging metrics among the four
molecular subtypes. Logistic regression analyses
was also performed to identify each subtype. Four
ROC curves and AUC values were obtained for
each metric or their combinations.

Results
Patient characteristics

A total of 90 patients with 90 lesions were included
in this prospective study. Among these, 26 cases
were Luminal A subtype, 38 cases were Luminal
B subtype, 8 cases were HER2-enriched subtype,
and 18 cases were TNBC subtype. The patient in-
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TABLE 2. The intergroup comparison for the imaging metrics across four breast cancer molecular subtypes
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HER2-

e Il MedTi';ﬁ%QR) M:gi’::‘hﬁgk) Mléli'lr?c;r;q(llék) Mcle:l?::l:?llgk) P
t-dMRI ADC,ee 0.85 (0.49) 0.90 (0.25) 0.74 (0.25) 0.81 (0.25) 0.106
ADC,,, 1.10 (0.51) 1.21 (0.31) 1.03 (0.19) 1.08 (0.22) 0.055
ADC,,, 1.44 (0.52) 1.53 (0.26) 1.38 (0.18) 1.38 (0.18) 0.071
AADC 0.73 (0.38) 0.66 (0.29) 0.81 (0.41) 0.83 (0.42) 0.075
IMPULSE d 15.00 (1.73) 16.16 (1.85) 14.79 (1.33) 14.96 (1.07) 0.038
v, 0.38 (0.13) 0.37 (0.07) 0.42 (0.13) 0.41 (0.09) 0.063
D, 1.91 (0.54) 2.08 (0.28) 2.02 (0.24) 1.95 (0.32) 0.712
D, 2.09 (0.20) 2.15 (0.08) 2.07 (0.31) 2.05 (0.21) 0.598
Cellularity 0.074 (0.03) 0.058 (0.03) 0.078 (0.05) 0.075 (0.03) 0.071
JOIN d 15.73 (1.57) 17.17 (2.09) 15.65 (2.02) 16.05 (1.42) 0.031
v, 0.51 (0.15) 0.51 (0.09) 0.54 (0.09) 0.55 (0.07) 0.144
K, 1812 (6.66) 16.38 (2.89) 15.68 (6.75) 16.74 (5.09) 0.374
D, 2.35 (0.41) 2.54 (0.22) 2.40 (0.26) 2.37 (0.32) 0.5%
Cellularity 0.081 (0.04) 0.063 (0.03) 0.083 (0.06) 0.082 (0.03) 0.114
EXCHANGE d 13.91 (1.31) 15.07 (1.79) 13.67 (1.20) 13.94 (1.07) 0.025
v, 0.58 (0.10) 0.58 (0.07) 0.58 (0.05) 0.59 (0.05) 0.280
k. 8.12 (5.50) 7.00 (3.44) 6.70 (3.9) 6.67 (2.2) 0.061
D., 2.30 (0.45) 2.52 (0.20) 2.36 (0.31) 2.30 (0.34) 0.442
Cellularity 0.12 (0.03) 0.09 (0.03) 0.12 (0.08) 0.12 (0.03) 0.053

The numbers in bold represent there is a significant difference across four molecular subtypes.

ADC = apparent diffusion coefficient; ER = estrogen receptor; d = diameter; D, = apparent extracellular diffusivity; D, = infracellular intrinsic diffusivity; HER2 = human
epidermal growth factor receptor 2; IQR = Interquartile Range: k,, = water exchange rate; TNBC = triple-negative breast cancer; v, = infracellular volume fraction; AADC

= (ADCgpyy, = ADCrge) / ADCrgse

formation and lesion characteristics are summa-
rized in Table 1.

Microstructural feature mapping of
breast tumors

Supplementary Figure1l shows the PGSE and
OGSE diffusion-weighted images for a representa-
tive patient (Luminal B subtype). The lesion con-
spicuity is acceptable. Figure 1 shows the ADC
metrics and microstructural parameter maps for
five representative breast cancer patients with dif-
ferent IHC factor status and molecular subtypes.
The overall ADC values decreased with longer dif-
fusion time, i.e. ADCpgsg < ADCy5y, < ADCsopy- As
shown in the red boxes, the lower ADC and k;,,
higher AADC and v;,, were observed in the ER(+)/
PR(+) case compared to the negative case. Besides,
d was found to be larger in the HER2(+) case. As
indicated by the yellow box, higher cellularity was
observed in the Ki67(+) case.

Intergroup comparison

Figure 2 shows the results of intergroup compari-
sons in the IHC factors. For t,-dMRI measure-
ments, ADCpgsg and ADC,sy, were significantly
lower in ER(+) cases, and AADC was higher (p =
0.047, 0.049 and 0.016, respectively). The PR(+)
group also showed lower ADCpgsg, ADCysy,
ADCs, and higher AADC (p = 0.002, 0.004, 0.005
and 0.002, respectively). In contrast, none ADC-
related metrics were significantly different in
the comparisons for HER2 and Ki67. For the MR
cytometry-derived parameters, increased v, was
shown in the ER(+) group for both IMPULSED and
JOINT (p = 0.013 and 0.030, respectively), while the
EXCHANGE-derived k;;, was lower (p = 0.012) and
the IMPULSED-derived cellularity was higher
(p = 0.027). For PR, the fitted v;;, was also higher
in the positive group for all three MR cytometry
methods (p = 0.003, 0.006 and 0.006, respectively).

Radiol Oncol 2025; 59(3): 337-348.
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FIGURE 2. Intergroup comparison of t,-MRI metrics and microstructural parameters respectively fitted from IMPULSED, JOINT and EXCHANGE
between positive and negative immunohistochemical factor status.

*=p <0.05 **=p <0.01. + represents outliers

Additionally, the EXCHANGE-derived d and k;,
were lower (p = 0.047 and 0.022, respectively) and
the IMPULSED-derived cellularity was higher (p
= 0.027) in the PR(+) group. For HER2, the diam-
eters d were larger in the positive group, with p
= 0.035 for IMPULSED, p = 0.006 for JOINT, and p
= 0.038 for EXCHANGE. For Ki67, all three meth-
ods obtained lower cellularity (p = 0.029, 0.037 and
0.037, respectively) in the positive group, while the
EXCHANGE-derived d was higher (p = 0.026).

Table 2 shows the results of intergroup com-
parisons across the four molecular subtypes. The
cell diameter d was the only metric that showed
significant difference across the four breast cancer
molecular subtypes (p = 0.038, 0.031 and 0.025 for
IMPULSED, JOINT and EXCHANGE, respective-
ly). This microstructural parameter was found to
be the highest in HER2-enriched subtype and low-
est in Luminal A subtype.

Radiol Oncol 2025; 59(3): 337-348.

Predicting immunohistochemistry (IHC)
factor status and molecular subtypes

Table 3 shows the AUC values for the prediction of
THC factor status. For ER, EXCHANGE-derived k;,
provided the highest AUC of 0.666 (95% CI, 0.552,
0.781; p = 0.012) among the classifiers based on a
single imaging metric. By combining multiple mi-
crostructural parameters, IMPULSED can improve
the AUC to 0.744 (95% CI, 0.641, 0.846; p < 0.001). For
PR, the highest AUCs based on a single metric and
combined regression model were 0.694 (AADC, 95%
CI, 0.583, 0.806; p = 0.002) and 0.727 (EXCHANGE,
95% CI, 0.620, 0.835, p < 0.001), respectively. For
HER?2, the above two highest AUCs were 0.697
(JOINT-derived d, 95% CI, 0.567, 0.827, p = 0.006)
and 0.734 (JOINT, 95% CI, 0.601, 0.867, p = 0.001). For
Ki67, they were 0.640 (EXCHANGE-derived d, 95%
CI, 0.525, 0.755, p = 0.026) and 0.679 (EXCHANGE,



TABLE 3. The diagnostic performance of imaging metrics for the prediction of immunohistochemistry (IHC) factor status
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AUC (PR)

AUC (HER2)

AUC (Ki67)

Model Parameter AUC (ER)
t,-dMRI ADCogqe 0.631 (0.508, 0.755)
ADC,;,, 0.630 (0.508, 0.752)
ADC,,,, 0.624 (0.493, 0.755)
AADC 0.660 (0.540, 0.779)
Combined 0.645 (0.522, 0.768)
IMPULSED d 0.590 (0.454, 0.72¢)
Vi, 0.664 (0.550, 0.779)
D, 0.529 (0.389, 0.669)
D, 0.540 (0.407, 0.673)
Cellularity 0.646 (0.521, 0.771)
Combined 0.744 (0.641, 0.844)
JOIN d 0.575 (0.443, 0.707)
Vio 0.643 (0.523, 0.764)
ki 0.623 (0.507, 0.740)
D, 0.487 (0.351, 0.623)
Cellularity 0.619 (0.490, 0.747)
Combined 0.731 (0.625, 0.837)
EXCHANGE d 0.584 (0.450, 0.718)
Vi, 0.596 (0.466, 0.725)
ki, 0.666 (0.552, 0.781)
D, 0.521 (0.382, 0.661)
Cellularity 0.618 (0.490, 0.745)
Combined 0.725 (0.610, 0.839)

0.693 (0.584, 0.803)
0.682 (0.571,0.793)
0.674 (0.560, 0.788)
0.694 (0.583, 0.806)
0.688 (0.576, 0.800)
0.621 (0.501, 0.742)
0.686 (0.576, 0.796)
0.587 (0.461, 0.714)
0.595 (0.473, 0.716)
0.638 (0.519, 0.758)
0.705 (0.597, 0.813)
0.601 (0.481, 0.721)
0.673 (0.559, 0.787)
0.535 (0.415, 0.655)
0.601 (0.478, 0.724)
0.613 (0.491, 0.736)
0.718 (0.609, 0.827)
0.624 (0.504, 0.744)
0.671 (0.555, 0.788)
0.643 (0.526, 0.760)
0.608 (0.483, 0.732)
0.617 (0.496, 0.739)
0.727 (0.620, 0.835)

0.594 (0.470, 0.718)
0.639 (0.055, 0.767)
0.627 (0.500, 0.755)
0.468 (0.328, 0.608)
0.623 (0.476, 0.770)
0.652 (0.512, 0.793)
0.554 (0.433, 0.675)
0.518 (0.337, 0.659)
0.567 (0.433, 0.700)
0.567 (0.426, 0.708)
0.689 (0.552, 0.826)
0.697 (0.567, 0.827)
0.453 (0.330, 0.577)
0.459 (0.335, 0.583)
0.536 (0.399, 0.673)
0.577 (0.438, 0.716)
0.734 (0.601, 0.867)
0.650 (0.510, 0.790)
0.511 (0.380, 0.642)
0.528 (0.407, 0.650)
0.562 (0.424, 0.699)
0.594 (0.445, 0.732)
0.668 (0.542, 0.794)

0.553 (0.427, 0.678)
0.580 (0.458, 0.702)
0.571 (0.449, 0.693)
0.496 (0.369, 0.623)
0.633 (0.516, 0.750)
0.612 (0.494, 0.730)
0.545 (0.419, 0.670)
0.558 (0.438, 0.679)
0.524 (0.399, 0.649)
0.638 (0.521, 0.754)
0.646 (0.532, 0.760)
0.595 (0.476, 0.714)
0.517 (0.394, 0.641)
0.520 (0.392, 0.649)
0.524 (0.403, 0.646)
0.632 (0.513, 0.750)
0.666 (0.552, 0.781)
0.640 (0.525, 0.755)
0.466 (0.343, 0.590)
0.547 (0.420, 0.675)
0.522 (0.401, 0.643)
0.632 (0.515, 0.748)
0.679 (0.565, 0.793)
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AUC values are presented as mean (bootstrapped 95% Cls). The numbers in bold represent the highest AUC values respectively achieved by the single-variable regression
model and multi-variable (combined) regression model. In the combined model, all the parameters obtained by each method was included.

ADC = apparent diffusion coefficient; d = diameter; D, = apparent extracellular diffusivity; D, = intracellular intrinsic diffusivity; ER = estrogen receptor; HER2 = human
epidermal growth factor receptor 2; Kié7 = nuclear associated antigen; K, = water exchange rate; PR = progesterone receptor; V, = infracellular volume fraction; AADC

= (ADCypy, = ADCpge) / ADCogse

95% CI, 0.565, 0.793, p = 0.005). In Figure 3, each
sub-plot shows the performance in predicting the
status of a specific IHC factor. In each sub-plot, the
four curves respectively correspond to: the classi-
fier with the highest AUC based on a single t,-dM-
RI metric (ADCpgsg, ADCyspy, ADCsop, o AADC), the
classifier based on the combination of all t,-dMRI
metrics, the classifier with the highest AUC based
on a single model-fitted microstructural parame-
ter (Vipn, 4, kin, Dey Or Dy, obtained from IMPULSED,
JOINT, or EXCHANGE), the classifier based on
the combination of all parameters obtained from
a specific MR cytometry method (IMPULSED,
JOINT, or EXCHANGE) that provided the highest
combined AUC.

Table 4 shows the AUC values for the prediction
of molecular subtypes of breast cancers. For TNBC,
EXCHANGE-derived k;, provided the highest
AUC of 0.696 (95% CI, 0.561, 0.831, p = 0.01) among
the classifiers based on a single imaging metric.
Combining other microstructural parameters im-
proved the AUC to 0.751 (95% CI, 0.633, 0.869, p =
0.001). For HER2-enriched, the highest AUCs based
on a single metric and combined model were 0.809
(JOINT-derived d, 95% CI, 0.675, 0.944, p = 0.004)
and 0.819 (JOINT, 95% CI, 0.657, 0.980, p = 0.003).
For Luminal A, the above two values were 0.638
(EXCHANGE-derived d, 95% CI, 0.513, 0.764, p =
0.041) and 0.730 (EXCHANGE, 95% CI, 0.616, 0.843,
p =0.001). For Luminal B, they are 0.622 (AADC, 95%
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FIGURE 3. The performance of derived parameters in predicting

immunohistochemistry (IHC) factor status. In each sub-plotf, the four curves
respectively correspond to: the classifier with the highest AUC based on a single
td-dMRI metric (ADC,y.. ADC,,. ADC,,, Or AADC), the classifier based on the
combination of all td-dMRI metrics, the classifier with the highest AUC based on
a single model-fitted microstructural parameter (v, d, k,, D,, or D,, obtained from
IMPULSED, JOINT, or EXCHANGE), the classifier based on the combination of all
parameters obtained from a specific MR cytometry method (IMPULSED, JOINT, or
EXCHANGE) that provided the highest combined AUC. (A) ER; (B) PR; (C) HER2; (D)
Ki67. The numbers within the parentheses in the legend represent the AUC of the
corresponding parameters.

ADC = apparent diffusion coefficient; ER = estrogen receptor; d = diameter; D, = apparent
extracellular diffusivity; D, = intracellular infrinsic diffusivity; HER2 = human epidermal
growth factor receptor 2; Kié7 = nuclear associated antigen; k,, = water exchange rate; PR =
progesterone receptor; v, = intracellular volume fraction

CI, 0.506, 0.738, p = 0.049) and 0.633 (EXCHANGE,
95% CI, 0.518, 0.748, p = 0.032). In Figure 4, each sub-
plot shows the performance in predicting a spe-
cific molecular subtype. The representative ROC
curves are selected in the same way as in Figure 3.

Discussion

Determining the IHC factor status and molecular
subtypes of breast cancer is an important refer-
ence for the development of appropriate clinical
treatment regimes. The dMRI-derived ADC met-
rics have shown potential in the prediction of the
IHC factor status and molecular subtypes®, with-
out the injection of contrast agents in DCE MRI.

Radiol Oncol 2025; 59(3): 337-348.
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However, the results of previous studies are con-
troversial. Several publications!®®3! reported that
the ADC values were lower in ER(+) and PR(+)
breast cancers, whereas Park et al.>> showed no sig-
nificant differences in ADC values between ER(+)
and ER(-), as well as PR(+) and PR(-). Besides, some
studies®** demonstrated the higher ADC in the
HER2(+) group, whereas others have shown the
opposite results®* or no significant difference®
For Ki67, the conclusion also remains uncertain.
Shen et al.% found that the ADC metrics decreased
with higher Ki-67 labeling index, while other find-
ings®% showed that there was no significant dif-
ference between high and low Ki67 expression.
Some advanced methods, such as intra-voxel inco-
herent motion (IVIM) imaging®% and diffusion-
kurtosis imaging (DKI)*, can improve the efficacy
to distinguish the status of ER and PR, but failed
to differentiate HER2 and Ki67. Recently, Lima et
al® utilized time-dependent ADC measurements
obtained by PGSE and OGSE to characterize
breast cancer based on IHC markers. Furthermore,
Ba ef al.?! and Wang et al.2 have implemented the
emerging MR cytometry method IMPULSED to
extract quantitative microstructural information
of breast tumors, and the derived parameters has
been shown to be effective in the prediction of IHC
factor status, molecular subtypes and treatment
response to neoadjuvant chemotherapy. However,
the biophyscial model used in IMPULSED neglect-
ed transcytolemmal water exchange, resulting in
the underestimation of vy, and unavailability of
membrane permeability.?” This study investigated
the efficacy of the MR cytometry methods that in-
corporate water exchange in predicting IHC fac-
tor status and molecular subtypes. The systematic
comparisons between the different MR cytometry
methods and the t;-dMRI measurements provide
guidance for clinical application of MR cytometry.

In this study, the lower ADCpgsg and ADCjsy,
values and higher AADC were observed in the ER(+)
group compared to ER(-), similarly, all three ADC
metrics were lower and AADC values were higher
in the PR(+) group, which are consistent with the
previous results.®34 Some studies**! suggested
that the lower ADC values for ER(+) and PR(+)
may be due to lower cell membrane permeability,
which has been reflected in the results of micro-
structural parameters, the EXCHANGE-derived
transcytolemmal water exchange rate constant k;;,
was lower in the ER(+) and PR(+) groups, indicat-
ing lower membrane permeability. In addition,
the IMPULSED and JOINT-derived v;,, was larg-
er in the ER(+) group, and all three quantitative



Wu L et al. / Evaluating MR cytometry in breast cancer subtyping

methods-derived v, was larger in the PR(+) group,
which may be related to the increased pathologi-
cal cellularity with ER or PR overexpression in
breast tumors.*> For the intergroup comparison
between HER2(+) and HER2(-), there was no sig-
nificant difference in ADC-related metrics, this
may be due to the fact that HER2 overexpression
leads to both increased cell proliferation and an-
giogenesis, whereas they have opposite impacts
on ADC values.?® However, the cell diameter d
obtained from all three MR cytometry methods
was significantly larger in the HER2(+) group,
which was consistent with the pathological find-
ing that HER2-overexpressing breast cancer has
increased cell size.* Finally, for the prediction of
Ki67 factor, only cellularity and the EXCHANGE-
derived d showed significant difference, but we are
still unclear about the reasons behind this. On the
other hand, for different molecular subtypes, the
model-fitted d values were the only metrics exhib-
iting significant difference among these subtypes.
Larger d was observed in HER2-enriched subtype
compared to non-HER2-enriched subtype, which
may be attributed to the HER2 overexpression
(larger d in the HER(+) group).

In this study, we also systemically compared
the diagnosis performance of three MR cytometry
methods in predicting IHC factor status and molec-
ular subtypes. For the classifiers based on a single
metric, AADC provided the highest AUC in the pre-
diction of PR status and Luminal B subtype; JOINT
obtained the highest AUC in predicting HER2 sta-
tus and HER2-enriched subtype; EXCHANGE per-
formed best in predicting ER, Ki67 status, TNBC
and Luminal A subtypes. For the classifiers based
on the combined regression model, IMPULSED
provided the highest AUC in predicting ER status;
JOINT obtained the highest AUC in the predic-
tion of HER?2 status and HER2-enriched subtype;
EXCHANGE achieved the highest AUC in the pre-
diction of PR status, Ki67 status, TNBC, Luminal A
and Luminal B subtypes. The above results show
that MR cytometry methods may provide better
diagnostic efficacy in the prediction of IHC factor
status and molecular subtypes, compared to tradi-
tional t,-dMRI measurements. Meanwhile, the MR
cytometry methods incorporating water exchange
(JOINT and EXCHANGE) improved the diagnos-
tic efficacy compared to IMPULSED (except for
ER status). Although previous numerical simula-
tion and in vitro cell experiments'®!* demonstrated
that JOINT and EXCHANGE, which incorporated
water exchange, obtained more accurate estima-
tion of v;;, and an additional biophysical parameter
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FIGURE 4. The performance of derived parameters in predicting breast cancer
molecular subtypes. In each sub-plot, the four curves respectively correspond

to: the classifier with the highest AUC based on a single td-dMRI metric (ADC,.

ADC,,,,. ADC,,,, or AADC), the classifier based on the combination of all td-dMRI
metrics, the classifier with the highest AUC based on a single model-fitted

microstructural parameter (v,. d, k,, D,, or D,, obtained from IMPULSED, JOINT, or
EXCHANGE), the classifier based on the combination of all parameters obtained
from a specific MR cytometry method (IMPULSED, JOINT, or EXCHANGE) that
provided the highest combined AUC. (A) TNBC; (B) HER2-enriched; (C) Luminal
A; (D) Luminal B. The numbers within the parentheses in the legend represent the
AUC of the corresponding parameters.

ADC = apparent diffusion coefficient; AUC = area under the receiver operating characteristic
curve; TNBC = triple-negative breast cancer; d = diameter; D_, = apparent extracellular
diffusivity; D,, = intracellular intrinsic diffusivity; K,, = water exchange rate; PR = progesterone
receptor; V, = intracellular volume fraction

ki, our study found only minor improvements in
breast cancer subtyping when water exchange is
incorporated into MR cytometry. Thus, while it is
desirable to incorporate such objective biophysical
phenomena into the biophysical model, improved
model accuracy does not necessarily translate into
superior clinical diagnostic performance.

There are several limitations in this study. First,
the data were collected in a single center with lim-
ited sample size, especially the HER2-enriched
subtype. It is necessary to include more breast can-
cer patients from multiple hospitals or institutions
and validate the results more comprehensively.
Second, our study lacks the correlation analysis
between the MR cytometry-derived parameters
and histopathological results. Such analysis will

Radiol Oncol 2025; 59(3): 337-348.
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TABLE 4. The diagnostic performance of imaging metrics for the prediction of molecular subtypes

Model Parameter

AUC (TNBC)

AUC (HER2-
enriched)

AUC (Luminal A)

AUC (Luminal B)

ADC ADC

PGSE

ADC

25Hz

ADC,,,.,
AADC
Combined
IMPULSED d
Vin
D

ex

D\n
Cellularity
Combined

JOIN d

Cellularity
Combined

EXCHANGE d

Cellularity
Combined

0.617 (0.470, 0.763)
0.518 (0.435, 0.727)
0.575 (0.411, 0.739)
0.648 (0.511, 0.785)
0.644 (0.501, 0.786)
0.519 (0.316, 0.676)
0.657 (0.522, 0.793)
0.537 (0.367, 0.707)
0.507 (0.348, 0.666)
0.593 (0.447, 0.738)
0.748 (0.629, 0.868)
0.519 (0.367, 0.671)
0.644 (0.496, 0.791)
0.630 (0.489, 0.772)
0.521 (0.363, 0.679)
0.549 (0.396, 0.703)
0.742 (0.616, 0.869)
0.509 (0.357, 0.661)
0.627 (0.477,0.778)
0.696 (0.561, 0.831)
0.478 (0.313,0.644)
0.542 (0.393, 0.692)
0.751 (0.633, 0.869)

0.681 (0.519, 0.844)
0.745 (0.614, 0.877)
0.744 (0.624, 0.863)
0.360 (0.141, 0.579)
0.765 (0.623, 0.907)
0.784 (0.609, 0.958)
0.651 (0.489, 0.813)
0.582 (0.375, 0.790)
0.622 (0.468, 0.776)
0.720 (0.503, 0.936)
0.739 (0.531, 0.947)
0.809 (0.675, 0.944)
0.611 (0.438, 0.785)
0.486 (0.349, 0.624)
0.642 (0.438, 0.845)
0.733 (0.537, 0.929)
0.819 (0.657, 0.980)
0.784 (0.602, 0.965)
0.532 (0.309, 0.755)
0.459 (0.299, 0.618)
0.666 (0.468, 0.865)
0.756 (0.559, 0.953)
0.784 (0.598, 0.969)

0.570 (0.438, 0.703)
0.600 (0.470, 0.729)
0.576 (0.449, 0.703)
0.474 (0.340, 0.609)
0.659 (0.538, 0.781)
0.614 (0.487, 0.741)
0.572 (0.433, 0.711)
0.565 (0.445, 0.684)
0.514 (0.376, 0.653)
0.606 (0.474, 0.737)
0.666 (0.544, 0.789)
0.590 (0.460, 0.719)
0.545 (0.412, 0.678)
0.558 (0.414, 0.701)
0.507 (0.383, 0.631)
0.584 (0.450, 0.718)
0.648 (0.525, 0.770)
0.638 (0.513, 0.764)
0.492 (0.364, 0.621)
0.543 (0.402, 0.684)
0.514 (0.390, 0.637)
0.620 (0.490, 0.750)
0.730 (0.616, 0.843)

0.577 (0.458, 0.697)
0.551 (0.429, 0.672)
0.566 (0.446, 0.686)
0.622 (0.506, 0.738)
0.633 (0.517, 0.748)
0.490 (0.370, 0.610)
0.593 (0.475, 0.710)
0.558 (0.436, 0.680)
0.533 (0.412, 0.654)
0.455 (0.336, 0.574)
0.630 (0.513, 0.747)
0.515 (0.394, 0.635)
0.593 (0.475, 0.712)
0.541 (0.420, 0.663)
0.539 (0.417, 0.662)
0.461 (0.342, 0.580)
0.609 (0.492, 0.727)
0.516 (0.396, 0.636)
0.601 (0.481, 0.721)
0.606 (0.489, 0.723)
0.553 (0.431, 0.674)
0.488 (0.368, 0.608)
0.633 (0.518, 0.748)

AUC values are presented as mean (bootstrapped 95% Cls). The numbers in bold represent the highest AUC values respectively achieved by the single-variable regression
model and multi-variable (combined) regression model. In the combined model, all the parameters obtained by each method was included.

ADC = apparent diffusion coefficient; d = diameter; D, = apparent extracellular diffusivity; D, = intracellular intrinsic diffusivity; K, = water exchange rate; PR =
progesterone receptor; TNBC = triple-negative breast cancer; V, = intracellular volume fraction; AADC = (ADCy,,, — ADC,) / ADC,qe

provide more reliable validation on the imaging
results and more comprehensive comparisons
between the quantitative methods which will be
included in our future work. Third, the b values
of the OGSE sequence with 50Hz were relatively
low (<500s/mm?) due to the limitations of gradient
performance. Despite our best efforts to eliminate
the impact of IVIM before model fitting, molecular
markers of angiogenesis such as micro-vessel den-
sity** still introduce bias in the estimation of mi-
crostructural parameters, especially when using
low b values. Fortunately, the modern whole-body
ultra-high-performance gradients can provide
higher b values for high-frequency OGSE when
PNS allows. Fourth, each imaging metric was aver-
aged across the whole ROI, which lost the informa-
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tion of spatial heterogeneity within breast tumors.
Surviving cells, dead cells and necrotic regions
may co-exist in each ROI This spatial heterogene-
ity can be captured by histogram analysis.*

In summary, this study was the first to evalu-
ate the clinical performance of MR cytometry
incorporating water exchange in predicting IHC
factor status and molecular subtypes of breast
cancer, and comprehensively compared the de-
rived microstructural parameters obtained and
conventional t -dMRI metrics. Our results showed
that advanced MR cytometry outperformed tra-
ditional ADC measurements. Incorporating wa-
ter exchange into MR cytometry methods further
improved the diagnosis performance. Specifically,
the results based on the multi-variable regression
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models showed that: IMPULSED performed best in
predicting ER status; JOINT was more suitable for
predicting HER2 status and HER2-enriched sub-
type; EXCHANGE can provide the highest AUC in
predicting PR and Ki67 status, TNBC, Luminal A
and Luminal B subtypes.
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