Analysis of Magnetic Resonance Contrast Agent Entrapment Following Reversible Electroporation In Vitro

Authors

  • Marko Strucic University of Ljubljana, Faculty of Electrical Engineering
  • Damijan Miklavcic University of Ljubljana, Faculty of Electrical Engineering
  • Zala Vidic University of Ljubljana, Faculty of Electrical Engineering
  • Maria Scuderi University of Ljubljana, Faculty of Electrical Engineering
  • Igor Sersa Jožef Stefan Institute
  • Matej Kranjc Faculty of Electrical Engineering Trzaska 25 Si-1000 Ljubljana Slovenia

Abstract

Background. Administering gadolinium-based contrast agent before electroporation allows the contrast agent to enter the cells and enables MRI assessment of reversibly electroporated regions. The aim of this study was evaluation of contrast agent entrapment in CHO cells and comparison of these results with those determined by standard in vitro methods for assessing cell membrane permeability, cell membrane integrity and cell survival following electroporation.

Materials and methods. Cell membrane permeabilization and cell membrane integrity experiments were performed using YO-PRO-1 dye and propidium iodide, respectively. Cell survival experiments were performed by assessing metabolic activity of cells using MTS assay. The entrapment of gadolinium-based contrast agent gadobutrol inside the cells was evaluated using T1 relaxometry of cell suspensions 25 min and 24 h after electroporation and confirmed by inductively coupled plasma mass spectrometry.

Results. Contrast agent was detected 25 min and 24 h after the delivery of electric pulses in cells that were reversibly electroporated. In addition, contrast agent was present in irreversibly electroporated cells 25 min after the delivery of electric pulses but was no longer detected in irreversibly electroporated cells after 24 h. Inductively coupled plasma mass spectrometry showed a proportional decrease in gadolinium content per cell with shortening of T1 relaxation time (R2 = 0.88 and p = 0.0191).

Conclusions. Our results demonstrate that the contrast agent is entrapped in cells exposed to reversible electroporation but exits from cells exposed to irreversible electroporation within 24 h, thus confirming the hypothesis on which detection experiments in vivo were based.

Downloads

Published

2024-09-09

How to Cite

Strucic, M., Miklavcic, D., Vidic, Z., Scuderi, M., Sersa, I., & Kranjc, M. (2024). Analysis of Magnetic Resonance Contrast Agent Entrapment Following Reversible Electroporation In Vitro. Radiology and Oncology, 58(3), 406–415. Retrieved from https://radioloncol.com/index.php/ro/article/view/4457

Issue

Section

Medical Physics